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 1 

Abstract. 2 

 Objectives: The nasal and sinus cavities in children may serve as reservoirs for microorganisms 3 

that cause recurrent and chronic lung infections. This study evaluates whether the mink can be used 4 

as an animal model for studying Pseudomonas aeruginosa mediated rhino-sinusitis since there is no 5 

suitable traditional animal model for this disease.  6 

Methods: Nasal tissue samples from infected and control mink were fixed in formalin, 7 

demineralized, and embedded in paraffin. A histological examination of sections from the infected 8 

animals revealed disintegration of the respiratory epithelium lining the nasal turbinates and swelling 9 

and edema of the submucosa. The expression of mucins and sialylated glycans was examined using 10 

immunohistochemistry.  11 

Results: MUC1, MUC2 and MUC5AC were upregulated in the inoculated animals as a much 12 

stronger staining was present in the respiratory epithelium in the infected animals compared to the 13 

controls and MUC5B appeared in large macrophage-like cells in the submucosa. The goblet cells in 14 

the nasal epithelium from the infected mink showed high affinity to the Maackia amurensis lectin 15 

and anti-asialo GM1 indicating a high concentration of α2-3 sialic acid respectively βGalNAc1-16 

4Galβ containing glycans in these mucin producing cells. The nasal cavity in the infected mink thus 17 

shows features of carbohydrate expression comparable to what has been described in the respiratory 18 

system after Pseudomonas aeruginosa infection in humans.  19 

Conclusion: It is suggested that the mink is suitable for studying Pseudomonas aeruginosa 20 

mediated rhino-sinusitis. 21 

Key words: rhino-sinusitis, Pseudomonas aeruginosa, mink, mucin, sialic acid 22 
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 Introduction. 1 

We here evaluate the mink as a suitable animal model for experimental P. aeruginosa produced 2 

rhino sinusitis based on micromorphology and by use of antibodies and lectins directed against 3 

glycoconjugates.  4 

Pseudomonas aeruginosa exists in nature in many forms and colonizes a number of different 5 

mucosal surfaces such as the respiratory, ocular, digestive, and reproductive mucosa. Epithelial 6 

cells from several tissues show a differential sensitivity to P.aeruginosa adherence [1]. 7 

The membranes of the airways in both man and mink are covered with a viscous colloid layer 8 

named mucus. The major components in mucus are mucins which are highly glycosylated proteins.  9 

P aeruginosa adhesins/lectins may play an important role for the colonization in immuno deprived 10 

patients since the bacterium adheres to mucins and other epithelial glycoconjugates [2-4]. The 11 

bacterium also causes colonization in most patients with cystic fibrosis (CF). 12 

 CF is caused by mutations in the transmembrane conductance regulator (CFTR) gene leading to 13 

decreased volume of airway epithelial lining fluid and letting go of mucus and thereby facilitating 14 

recurrent and chronic lung infections notably with P. aeruginosa growing as alginate containing 15 

biofilm [5-7]. Until now none of the transgenic cystic fibrosis mouse models that have been 16 

developed mimics the feature of human CF disease with chronic lung infection by mucoid strains of 17 

P. aeruginosa. [8-10]. The rabbit is often used as an animal model of sinusitis [11,12]. In this study 18 

we evaluate the mink as an alternative to study the pathogenesis of p. aeruginosa mediated sinusitis 19 

for several reasons. 1) The mucosal histology of both the upper and lower respiratory tracts in 20 

humans and mink are much alike. 2) P. aeruginosa is normally an organism of low invasiveness 21 

and low virulence in experimental laboratory animals and studies in the pathogenesis of its 22 

pathogenesis are hindered because of the inherent resistance of most species to disease of this 23 
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organism . However, it seems that the mink is the only animal species to develop fatal and 1 

contagious hemorrhagic pneumonia caused by P. aeruginosa [13-15]. 3) Mink are also susceptible 2 

to pulmonary infection with an experimental intra-tracheal or intra-nasal inoculation [16,17]. 4) We 3 

have previously shown that the lectins from P. aeruginosa bind to the submucosal glands and 4 

goblet cells in the mink airways [18]. 5 

Chronic rhino sinusitis with inflamed tissue and mucosal edema leads to decreased ciliary function 6 

and enhanced bacterial colonization.  Consequently viscous mucus is present in most CF patients 7 

and the paranasal sinuses constitute an alternative colonization site [19].  The contaminating 8 

bacterium in the upper airways is predominantly P. aeruginosa as in the lungs [20].  9 

Mucus forms a surface layer on the airways and serves as a first line of defense during airway 10 

infection. At least 16 mucin genes have been cloned in the lung and data suggest that some of them 11 

play a defensive role during pseudomonas infection [4,21]. 12 

 Mucins are high-molecular weight, multifunctional glycoproteins that contain an elevated 13 

percentage of serine, threonine and proline in addition to a large quantity of complex O-linked 14 

oligosaccharides.  The mucins are often classified as being membrane bound, or they are secreted 15 

non-gel-forming or secreted gel-forming mucins. In the airways they are produced by goblet cells in 16 

the surface epithelium and from submucosal glands. Mucins play a regulatory role in normal 17 

epithelial tissues. In the airways they protect and lubricate the respiratory tract [22]. They bind 18 

bacterial and viral pathogens as their anti-inflammatory role may be mediated through inhibition of 19 

toll-like receptor signaling [23]. In the present study we have explored the in situ binding to the 20 

nasal sections using antibodies directed against a number of mucins. Relevance for the mucins used 21 

for the study of infection (nomenclature for mucins:  MUC in human; muc in mouse and Muc in 22 

other animal models (rat and chinchilla). 23 
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MUC1:  The mucin is a membrane-tethered mucin that interacts with P. aeruginosa through 1 

flagellin [24]. 2 

MUC2:  Is highly elevated at the mRNA level in cystic fibrosis airways and following exposition P. 3 

aeruginosa [25]. 4 

MUC3: Seems not to be involved in pseudomonas infection. Expression of the mucin is therefore 5 

used as a negative control. 6 

MUC4: The mucin was downregulated in mice infected with Pseudomonas aeruginosa [26] 7 

MUC5AC: Is highly elevated at the mRNA level in cystic fibrosis airways and following 8 

exposition to P. aeruginosa [25] 9 

MUC5B: The mucin is present in cystic fibrosis airway secretions [27]. 10 

MUC16: Is a membrane anchored mucin that that provides a barrier to bacterial adherence and 11 

invasion of epithelial cells [28]. 12 

 13 

When produced in excess, the mucus may contribute to the morbidity and mortality associated with 14 

respiratory diseases. Many mucins are highly sialylated and alteration of the sialic acid content are 15 

frequently associated with viscosity in mucins and impaired mucociliary transport leading to 16 

bacterial infection and inflammatory cell infiltration in the respiratory tract as in rhinosinusitis and 17 

bronchitis [29]. 18 

To study the impact of sialic acid epitopes in the normal and P.aeruginos inflamed tissue we used 19 

the following lectins and antibodies: Maackia amurensis lectin (MAA) which is specific for 20 

Sialylα2-3Gal [30], Sambucus nigra lectin (SNA) which is specific for the Sialylα2-6Gal linkage 21 

[31] . Anti-ganglioside GM1 that detects Galβ1-3GalNAcβ1-4[Sialylα2-3]Galβ1-4Glcβ1-ceramide 22 

and Anti-asialo-ganglioside GM1 that detects Galβ1-3GalNAcβ1-4Galβ1-4Glcβ1-ceramide. 23 
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The results will provide information on the use of mink as an experimental model for P. aeruginosa 1 

infection with inflammation and increased mucin production in the sinus-nasal cavity.   2 

 3 

 4 

 5 
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 18 
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Materials and methods. 1 

The mink were assigned to individual cages and with separate water supply. All animal experiments 2 

were conducted at the National Veterinary Institute, Technical University of Denmark in 3 

accordance with both institutional and national guidelines (Danish Animal Experiments 4 

Inspectorate, Permit Number: 2012-15-2934-00524). The experiments were approved by the Danish 5 

Animal Care and Ethics Committee, Denmark. The P. aeruginosa isolate used for infection was 6 

recovered from an outbreak of hemorrhagic pneumonia in mink on the Danish island Mors in 2008 7 

(Difco serotype O6, laboratory journal number at the National Veterinary Institute: 2008-52-937). 8 

This isolate was used because the O-antigen of B-band bacterial lipopolysaccharide contributes to 9 

initial damage and inflammatory responses in human lungs.  10 

Four mink were infected intra-nasally with 0.5 ml P. aeruginosa with 3.7x  103 - 107 colony 11 

forming units (cfu)/ml 0.9% saline.  The concentration of the bacterial solution was determined 12 

using the plate count method. Another four mink served as controls and received 0.9% saline intra-13 

nasally.  14 

Four days after infection the minks were euthanized. Swabs were taken from the nasal cavity and 15 

from the lung.  For a more detailed procedure see Salomonsen et al. (13,14) The swabs were stroked 16 

on blood agar and grown at 37°C for 24 hours. The P. aeruginosa cultured from the nasal cavities 17 

had pulsed-field gel electrophoresis (PFGE) types indistinguishable from the isolate used for intra-18 

nasal infection. 19 

The mink were anesthetized with a ketamine/xylazin mixture injected intramuscularly and 20 

euthanized with an injection of T-61 (MDS-Animal Health, Boxmee, the Netherlands) in the liver. 21 

The nasal tissue samples were dissected immediately after the animals were euthanized.  22 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
8 

 

The nasal tissue samples were prepared by cutting the nose in the dorsal plane right above the hard 1 

palate and transversally at the level of the eyes so that a large piece of the nasal cavity could be 2 

separated from the head. This nasal block was then fixed in 10% formalin for 1-2 days and 3 

demineralized in 14% EDTA with 1.5% w/v NaOH for 3 days, and embedded in paraffin. 4 

The paraffin blocks were cut in 3µm sections and used for histochemical procedures 5 

Histochemistry 6 

The following antibodies were used in this study: 7 

Anti-MUC1 from Abcam (ab.1548) is a rabbit polyclonal antibody. The immunogen was a 8 

synthetic peptide with amino acid sequence from the cytoplasmic tail. Sections from human 9 

submandibular gland served as positive controls. Anti-MUC2 from Abcam (ab. 134119) is a rabbit 10 

monoclonal antibody. The immunogen was a synthetic peptide corresponding to a region with 11 

human MUC2. Sections from human colon served as positive controls.  12 

Anti-MUC3 from biobyt (orb95411) is a rabbit polyclonal antibody. According to the manufactures 13 

is reacts in tissues from human, mouse and rat). Anti-MUC4 from Santa Cruz (sc33654) is a mouse 14 

monoclonal IgG antibody raised against the transmembrane domain of rat mucin4. Anti-MUC5AC 15 

from MyBioSource (MBS2525387) is a rabbit polyclonal antibody. The immunogen was a 16 

synthetic peptide of human MUC5AC. Anti-MUC5B is a mouse monoclonal antibody from Abcam 17 

(ab77995). The immunogen was an un-glycosylated serine and threonine free, synthetic peptide 18 

from the N-terminal region of human MUC5B.  Anti-MUC16 from Abcam (ab133419) is a rabbit 19 

polyclonal antibody. The immunogen was a synthetic peptide from internal sequence amino acids of 20 

human MUC16. Sections from human lung served as controls. 21 
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The following lectins and antibodies were used to demonstrate sialic acid residues. Biotinylated 1 

lectins from Maackia amurensis (MAA)  and Sambucus nigra (SNA) (EY Laboratories; San Mateo, 2 

CA, USA). Sections from ferret lung tissue served as positive controls [32]. To study the binding of 3 

sialylated and non-sialylated glycosphingolipids we used antibodies against ganglioside GM1 and 4 

asialo-ganglioside GM1 [33]. Anti-GM1 from Calbiochem is rabbit polyclonal antibody and Anti-5 

asiolo-GM1 is a rabbit polyclonal antibody from LifeSpan. 6 

Presence of phagocytic cells in the sections was demonstrated using an anti-myeloperoxidase 7 

antibody (Antibodies online Cat No: ABIN 1689910) that detects antimicrobial activity in inflamed 8 

tissue [34]. Presence of bacteria in the sections of the nasal tissue was detected with anti-9 

Pseudomonas antibody from Abcam (catalog nr. ab 68538, according to the manufactures it was 10 

raised and validated with strain Boston 41501). 11 

 12 

 13 

 14 
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 19 

 20 

 21 
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Results. 1 

As in in the human organ, the mink nasal cavities are lined by a pseudostratified ciliated epithelium 2 

with goblet cells (Figs.1A and C). The lamina propria below the respiratory epithelium is richly 3 

vascular. The spaces between the turbinates (air channels) are normally empty but sparse cellular 4 

debris may be present. Both the human and mink submucosa contain exocrine glands but there 5 

fewer submucosal glands in the mink submucosa than in the human equivalent. An exception is the 6 

submucosa below the olfactory epithelium which contains numerous exocrine glands (Fig.1E). 7 

The pseudostratified  mucosal nasal epithelium was disintegrated and the loose connective tissue 8 

beneath the respiratory epithelium showed swelling and edema in the infected animals. A cellular 9 

accumulation was observed in the loose connective tissue in the turbinates and in the air channels 10 

from the P. aeruginosa inoculated mink (Figs.1B and D). The Alcian blue/PAS staining revealed 11 

that many cells in the debris between the turbinates were Alcian blue positive (Fig.1D). The 12 

connective tissue and the glands in the olfactory area of the nasal cavity was seemingly unaffected 13 

by the infection (Fig.1F) in contrast to what was observed in the respiratory part of the nasal cavity. 14 

To decide if phagocytes had infiltrated the inflamed tissue some sections were incubated to show 15 

presence of myeloperoxidase containing cells. The turbinates in healthy mink displayed no sign of 16 

inflammation while the turbinate submucosa from the infected mink was loaded with 17 

myeloperoxidase positive cells (Figs.2A and B). Immuno-staining with an antibody against 18 

Pseudomonas aeruginosa served to verify bacterial accumulation in the inoculated animals. There 19 

was no immuno- reaction in sections from the control animals, while the air channels in the nasal 20 

cavities from the infected mink were loaded with strongly reacting debris (Figs.2C and D). 21 

The expression of both MUC1 and MUC2 in the inoculated animals seems to be upregulated since 22 

there was a much stronger anti-MUC1 and anti-MUC2 staining in the respiratory epithelium from 23 
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the infected animals compared to the controls (Figs.3A-D).  A sparse fine-granular anti-MUC1 1 

reaction was present in the respiratory epithelium in the control mink while both the glycocalyx and 2 

the cell surfaces reacted strongly in the infected animals. MUC2 staining in the mucosal glycocalyx 3 

was noticed in both control and diseased animals. However, a strong i MUC2 reaction in the  goblet 4 

cells was present only in the infected mink. Incubation with anti-MUC16 resulted in a weak and 5 

scattered staining in the surface epithelial cells from both groups of mink. . Incubation with anti 6 

MUC3 and anti-MUC4 showed no staining. A few goblet cells were stained in the control mink by 7 

anti-MUC5AC while numerous MUC5AC positive cells were observed in the infected animals (Fig 8 

3E and F).  9 

While the surface epithelium from both the healthy and infected mink displayed an intense fine-10 

granular MUC5B reaction it was only the submucosa from the P aeruginosa infected mink that 11 

contained large MUC5B positive cells (Figs 4A and B).  Potential changes in expression of sialic 12 

acid in pseudomonas infection were investigated by incubation with anti-GM1, anti-asialo-GM1, 13 

and the lectins MAA and SNA. Most of the respiratory epithelial cells showed a moderate staining 14 

intensity with anti-GM1 in both control and diseased animals. Incubation with asialo-GM1 resulted 15 

in strongly reacting with the nasal epithelial cells from the infected mink while the antibody did not 16 

stain the cells from the control mink (Figs.4C and D). The mucosal glycocalyx in both groups of 17 

animals reacted with the sialic acid detecting lectin MAA. However, the lectin staining revealed few 18 

MAA positive goblet cells in the sections from the healthy animals while there was numerous 19 

stained goblet cells in the sections from the inoculated animals (Fig E and F). Incubation with SNA 20 

resulted in staining of occasional goblet cells in both groups of animals. 21 

 22 

 23 
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Discussion. 1 

The purpose of the study was to describe the pathological consequences of an experimental 2 

P.aeruginosa rhinosinuitis in mink and thereby to evaluate the mink as an animal model for P. 3 

aeruginosa mediated infection.   The same mink that were used in the present study have previously 4 

been examined for pathological changes in their lungs associated with Pseudomonas aeruginosa 5 

and it was concluded that the infected animals had developed typical hemorrhagic pneumonia  [13, 6 

14].  7 

  To serve as a model for airway infections the mucosal histology in the respiratory tract from mink 8 

and humans should be much alike.  In both species the nasal cavity, the paranasal sinuses and the 9 

tracheobronchial tree are lined by a pseudostratified columnar, ciliated epithelium with numerous 10 

goblet cells. The respiratory epithelium is supported by a richly vascular connective tissue 11 

containing exocrine glands. 12 

The micromorphology of the mink and human airway systems is thus in many ways comparable. 13 

Lung and sino-nasal infections in humans with P. aeruginosa causes inflammation of the mucosal 14 

tissue [20,35,36] and we here show that the P. aeruginosa infected mink also expresses typical 15 

signs of inflammation and edema in the submucosa and disintegration of the nasal mucosa.  16 

Inflammation markers. 17 

Cells stained by the antibody directed against myeloperoxidase invaded the submucosa from the 18 

infected mink indicating the presence of neutrophils in the loose connective tissue [34]. Further, the 19 

air channels were stuffed with debris reacting with the antibody against P. aeruginosa. The P 20 

aeruginosa cultured from the nasal cavities had pulsed-field electrophoresis types indistinguishable 21 

from the isolate used for intranasal infection. We therefore conclude that the inoculation of the 22 

minks was successfully performed.   23 
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Mucins. 1 

Changes of the carbohydrate sequences of respiratory could alter the mucus properties leading to 2 

ineffective mucociliary clearance and to bacterial colonization and infection [37]. The respiratory 3 

tract holds several mucin types. We have focused on the expression of some mucins that all have 4 

been detected in the human airways. 5 

MUC1 6 

MUC1 is a transmembrane mucin which is expressed on the apical surface of many epithelial cells 7 

as well as hematopoietic cells. The mucin is primarily involved in the protection of epithelial 8 

surfaces and contributes to the mucosal barrier to infection.  MUC1 seems to play an important role 9 

in P. aeruginosa infections since the mucin suppresses inflammatory responses induced by the 10 

bacterium. Measurements of lung tissue lysates have shown that MUC1 levels in wild type mice is 11 

initially low, but gradually increases after P. aeruginosa inhalation [38] and the mucin may prevent 12 

lung injury in mice models of repetitive P. aeruginosa infection [39].  13 

The mucin contributes to the mucosal barrier to infection and the mucin suppresses inflammatory 14 

responses induced by P. aeruginosa.  Lillehoj et al. [40,41] have showed that MUC1 mucins on the 15 

epithelial cell surface are adhesion sites for P. aeruginosa flagellin. We observed that only a weak 16 

granular reaction was present in the respiratory epithelium in the control mink after incubation with 17 

anti-MUC1 while both the glycocalyx on the cell surface and the cell membranes in the respiratory 18 

epithelial cells reacted strongly in the infected animals.   19 

MUC2 20 

The surface epithelium in the intestine is coated with a thick protective MUC2 mucin while this gel-21 

forming mucin  is absent or very scarcely present in the mucous gel of normal airways [42]  P. 22 
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aeruginosa infection leads to upregulation of the mucin gene MUC2 in both humans and animals 1 

[43,44]. The upregulation of MUC2 during airway inflammation induced by bacterial infection 2 

could be important to protect the tissue from inflammatory cells  3 

We here show that the nasal surface epithelium in both the healthy and the infected mink was 4 

coated with a glycocalyx that stained strongly after incubation with anti-MUC2. A cytoplasmic 5 

reaction was however only noticed in the epithelial cells infected with P. aeruginosa. Mucin2 is a 6 

glycoprotein that is secreted predominantly from the goblet cells and it seems that intracellular 7 

staining of anti-MUC2 in the epithelial cells suggests that P. aeruginosa can stimulate secretion of 8 

this mucin in the airways.  9 

MUC3, MUC5AC, MUC5B, MUC16. 10 

MUC3 is a transmembrane glycoprotein that is expressed in normal colon and in very low levels in 11 

the respiratory tissues [45]. In contrast to the  strong activity we noticed with the transmembrane 12 

mucin MUC1 our results show no  immmunostaining with anti-MUC3 in P. aeruginosa infected 13 

mink. Both mucin 2 and mucin 5AC are produced in goblet cells.  We noted an increased immuno 14 

staining in the goblet cells with anti-MUC2 and anti-MUC5AC after P. aeruginosa infection but the 15 

glycocalyx reacted only with anti-MUC2. Chorley et al [46] likewise noticed a differential MUC2 16 

and MUC5AC secretion by tracheal cells. MUC5B is required for airway defense and Sepper et al 17 

(47] found that expression of the mucin in lung alveolar macrophages was increased in long-term 18 

smokers and in mice infected by multiple bacteria there was an increased secretion of Muc5B and 19 

macrophage activity  in the airways [48]. We demonstrated large Muc5B positive macrophage-like 20 

cells in the nasal submucosa.  Also MUC16 are attributed to airway goblet cells [40].  Muc16 is a 21 

cell surface mucin that provides a barrier to bacterial adherence but only a few MUC16 positive 22 

cells were observed in the two animal groups. 23 
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Increased production of airway mucins seems to be prerequisite in establishing a bacterial biofilm in 1 

the airways. The virulence of P. aeruginosa is partly dependent by its ability to form a biofilm and 2 

this bacterial biofilm contributes to the pathogenesis of chronic rhino-sinusitis. We show increased 3 

staining of antibodies directed against mucin1, mucin2 and mucin5AC and mucin 5B in the nasal 4 

turbinates from mink infected with P. aeruginosa. 5 

Sialic acids. 6 

Sialic acids are nine-carbon sugar residues present on glycosphingolipids, N-glycans and O-7 

glycans.  N-Acetylneuraminic acid (NeuAc) is the exclusive sialic acid in humans and thus often 8 

referred to simply as sialic acid. The sugar occupies the terminal position within glycan molecules 9 

on the surface of vertebrate cells and serves as receptors for many pathogenic bacteria and viruses. 10 

Inflammation may modify the appearance of glycoproteins [41] and carbohydrates containing sialic 11 

acid change level of expression in the respiratory tract during infection . Gallego and Hulen [1] 12 

have shown that variable amount of sialic acid in the epithelial cell surface glycoconjugates causes 13 

differential sensitivity to P. aeruginosa adherence.  14 

It has long been established that mucins and sialic acid act as receptors for P aeruginosa in the 15 

respiratory tract [49,50]. Mucins are rich in sialic residues and sialylation may be altered in the 16 

mucin in CF patients suffering from P. aeruginosa infection. In the present study we have used 17 

lectins and glycosphingolipids as markers to detect presence sialic acid epitopes in the mink nasal 18 

tissue. Some studies have shown a shift from a α2-6 sialic acid linkage to a α2-3 sialic acid linkage 19 

[51]. MAA is a lectin that binds with high affinity to oligosaccharides containing terminal sialic 20 

acid linked 2-3 to penultimate galactose residues. We here show that in the infected nasal 21 

epithelium it is the goblet cells that are upregulated with α2-3 sialic acid containing glycans. 22 
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Incubation with SNA implies that there was no upregulation of α2-6 sialic acids in mink nasal 1 

tissues.  2 

Sialic acid is not the only carbohydrate-receptor that is vital for binding P. aeruginosa. The 3 

glycosphingolipid GM1 contains one sialic acid residue bound to galactose. Incubation with this 4 

ganglioside showed no differences in the sparse immuno-staining between sections from infected 5 

and non-infected animals. When the sialic acid residue is removed from the ganglioside GM1 as in 6 

asialo-ganglioside GM1 then antibody staining showed no reaction in the nasal tissue from the 7 

control mink while there was a strong asialo-GM1 expression in the infected tissue. This result is in 8 

concordance with Bentzmann et al [52]) who observed that the pili of P aeruginosa bind 9 

specifically to the carbohydrate sequence βGalNAc1-4Galβ, a disaccharide sequence present in 10 

asialo-GM1.   11 

A marked association exists between upper and lower airway cultures in patients with CF since the 12 

paranasal sinuses often are colonized with matching CF lung bacteria [53] and treatment of the 13 

infection in both the lung and paranasal sinuses is thus important [54].  14 

 15 

Conclusions. 16 

Since the nasal cavity from mink with acute P. aeruginosa infection displays carbohydrate 17 

expression comparable to what is described as a chronic biofilm-based infection in the respiratory 18 

system we suggest that the mink can be used to study P. aeruginosa mediated rhino-sinusitis. The 19 

genome of the mink seems not yet to have been sequenced which is a serious drawback when it 20 

comes to design molecular reagents for the use of experiments with this animal. 21 
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Illustrations. 1 

Fig.1. Sections of healthy control mink (Figs. A, C and E) and mink that were inoculated with 2 

Pseudomonas aeruginosa (Figs B, D and F) stained with HE-PAS-Alcian blue.  3 

Control animals: The nasal cavity is covered with continuous respiratory epithelium. Two turbinates 4 

are shown in Figs.A and C.  The green arrow in Fig. A marks the osseous part of a turbinate. In 5 

Fig.C the goblet cells are marked by a green arrow. The goblet cells are present in the columnar 6 

epithelial cells and stained by Alcian Blue. The cytoplasm in the columnar cells and the loose 7 

connective tissue underneath the surface epithelium (the submucosa, marked S) is stained pink by 8 

eosin. The olfactory mucosa is composed of a pseudostratified epithelium that contains different 9 

cell types (Fig.E). The olfactory cilia are non-motile and are marked by an arrow. They are strongly 10 

stained by Alcian Blue. Beneath the epithelium (O) there is a loose vascular connective tissue with 11 

afferent nerves and many Alcian Blue positive exocrine glands (Bowmans glands; G). 12 

Infected animals: Following the intra-nasal infection the connective tissue in the turbinates became 13 

swollen with edema and cellular infiltration and the surface epithelium was disintegrated (Fig.B). 14 

The green arrow in Fig.B marks the osseous part of a turbinate.  15 

While the air channels contained no or few cells in the healthy mink they were filled with cellular 16 

debris (DE) in the infected animals. Many of the debris cells are stained by Alcian Blue  (Fig.D).  17 

In the olfactory region the morphology of the surface epithelium and the supporting connective 18 

tissue and the glands seem to be unaffected by bacterial inoculation (Fig. F).   19 

Fig. 2. Immunohistochemical staining for myeloperoxidase in a turbinate from a normal (Fig.A) and 20 

from a diseased (Fig.B) animal. The contours of the turbinates are outlined with white line The 21 

submucosa in Fig.B contains many positive cells. Figs.C and D show the staining in the nasal 22 
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cavities after incubation with the anti-pseudomonas aeruginosa antibody. The cellular debris (DE) 1 

in the air channels from the infected mink reacts strongly. The contours of the turbinates are 2 

outlined with white lines.  3 

Fig. 3. Figs.A-D illustrate the changes that takes place in mucin expression in the nasal turbinates 4 

after infection with Pseudomonas aeruginosa. The sections were stained with antibodies against 5 

MUC1 (Figs.A and B) and MUC2 (Figs.C and D). Figs. A and C show tissue from a healthy animal 6 

and Figs.B and D show tissue from an infected animal. The respiratory surface epithelium (EP) 7 

from the healthy animal was nearly non-reacting after incubation with anti-MUC1 while the 8 

epithelium from the infected mink was strongly stained. The antibody directed against MUC2 9 

reacted with the glycocalyx (marked by an arrow) from both the control (Fig.C) and the inoculated 10 

(Fig.D) animal while only the underlying respiratory epithelium  from the sick animal showed ant-11 

MUC2 staining. Figs.E and F illustrate reaction for MUC5AC. Only few goblet cells are stained 12 

positive in the respiratory epithelium from the control mink (Fig.E) while there are numerous  13 

MUC5AC positive goblet cells in the epithelium from the inoculated animal (Fig.F).  14 

Fig.4. Reaction pattern in the turbinates for MUC5B is shown in figs. A and B. A small-granular 15 

reaction is seen in the surface epithelium from both the infected and the healthy mink. The 16 

subepithelial tissue contains from the inoculated animals contains large MUC5B positive cells 17 

marked by arrowhead. Reaction pattern in the turbinates for asialo GM1 is depicted in Figs.C and 18 

D. There is virtually no reaction in the turbinates from the healthy mink (Fig.C) while almost all the 19 

epithelial cells react in the cells from the infected animal (Fig. D). Thickness of the epithelium is 20 

indicated by arrows. Figs.E and F show MAA reaction in the turbinates. The goblet cells (marked 21 

by green arrows) in the respiratory epithelium from the healthy mink were almost blank after 22 

incubation with the lectin (Fig E) while they were strongly stained in the infected animals (Fig.F). 23 
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