17,984 research outputs found

    Doped high-Tc cuprate superconductors elucidated in the light of zeros and poles of electronic Green's function

    Full text link
    We study electronic structure of hole- and electron-doped Mott insulators in the two-dimensional Hubbard model to reach a unified picture for the normal state of cuprate high-Tc superconductors. By using a cluster extension of the dynamical mean-field theory, we demonstrate that structure of coexisting zeros and poles of the single-particle Green's function holds the key to understand Mott physics in the underdoped region. We show evidence for the emergence of non-Fermi-liquid phase caused by the topological quantum phase transition of Fermi surface by analyzing low-energy charge dynamics. The spectra calculated in a wide range of energy and momentum reproduce various anomalous properties observed in experiments for the high-Tc cuprates. Our results reveal that the pseudogap in hole-doped cuprates has a d-wave-like structure only below the Fermi level, while it retains non-d-wave structure with a fully opened gap above the Fermi energy even in the nodal direction due to a zero surface extending over the entire Brillouin zone. In addition to the non-d-wave pseudogap, the present comprehensive identifications of the spectral asymmetry as to the Fermi energy, the Fermi arc, and the back-bending behavior of the dispersion, waterfall, and low-energy kink, in agreement with the experimental anomalies of the cuprates, do not support that these originate from (the precursors of) symmetry breakings such as the preformed pairing and the d-density wave fluctuations, but support that they are direct consequences of the proximity to the Mott insulator. Several possible experiments are further proposed to prove or disprove our zero mechanism.Comment: 17 pages, 15 figure

    Itinerant ferromagnetism in the multiorbital Hubbard model: a dynamical mean-field study

    Full text link
    In order to resolve the long-standing issue of how the itinerant ferromagnetism is affected by the lattice structure and Hund's coupling, we have compared various three-dimensional lattice structures in the single- and multiorbital Hubbard models with the dynamical mean-field theory with an improved quantum Monte Carlo algorithm that preserves the spin-SU(2) symmetry. The result indicates that {\it both} the lattice structure and the d-orbital degeneracy are essential for the ferromagnetism in the parameter region representing a transition metal. Specifically, (a) Hund's coupling, despite the common belief, is important, which is here identified to come from particle-hole scatterings, and (b) the ferromagnetism is a correlation effect (outside the Stoner picture) as indicated from the band-filling dependence.Comment: 4 pages, 5 figure

    Anomalous behavior of the spin gap of a spin-1/2 two-leg antiferromagnetic ladder with Ising-like rung interactions

    Full text link
    Using mainly numerical methods, we investigate the width of the spin gap of a spin-1/2 two-leg ladder described by \cH= J_\rl \sum_{j=1}^{N/2} [ \vS_{j,a} \cdot \vS_{j+1,a} + \vS_{j,b} \cdot \vS_{j+1,b} ] + J_\rr \sum_{j=1}^{N/2} [\lambda (S^x_{j,a} S^x_{j,b} + S^y_{j,a} S^y_{j,b}) + S^z_{j,a} S^z_{j,b}] , where Sj,a(b)αS^\alpha_{j,a(b)} denotes the α\alpha-component of the spin-1/2 operator at the jj-th site of the a(b)a (b) chain. We mainly focus on the J_\rr \gg J_\rl > 0 and ∣λ∣≪1|\lambda| \ll 1 case. The width of the spin gap as a function of λ\lambda anomalously increases near λ=0\lambda = 0; for instance, for −0.1<λ<0.1-0.1 < \lambda < 0.1 when Jl/Jr=0.1J_{\rm l}/J_{\rm r} = 0.1. The gap formation mechanism is thought to be different for the λ0\lambda 0 cases. Since, in usual cases, the width of the gap becomes zero or small at the point where the gap formation mechanism changes, the above gap-increasing phenomenon in the present case is anomalous. We explain the origin of this anomalous phenomenon by use of the degenerate perturbation theory. We also draw the ground-state phase diagram.Comment: 4 pages, 11 figures; Proc. "The International Conference on Quantum Criticality and Novel Phases" (2012), to be published in Phys. Stat. Solidi

    Gap formation and soft phonon mode in the Holstein model

    Full text link
    We investigate electron-phonon coupling in many-electron systems using dynamical mean-field theory in combination with the numerical renormalization group. This non-perturbative method reveals significant precursor effects to the gap formation at intermediate coupling strengths. The emergence of a soft phonon mode and very strong lattice fluctuations can be understood in terms of Kondo-like physics due to the development of a double-well structure in the effective potential for the ions

    Metamagnetism of antiferromagnetic XXZ quantum spin chains

    Full text link
    The magnetization process of the one-dimensional antiferromagnetic Heisenberg model with the Ising-like anisotropic exchange interaction is studied by the exact diagonalization technique. It results in the evidence of the first-order spin flop transition with a finite magnetization jump in the N\'eel ordered phase for S≥1S\geq 1. It implies that the S=1/2 chain is an exceptional case where the metamagnetic transition becomes second-order due to large quantum fluctuations.Comment: 4 pages, Revtex, with 6 eps figure

    Peculiar Velocities of Nonlinear Structure: Voids in McVittie Spacetime

    Get PDF
    As a study of peculiar velocities of nonlinear structure, we analyze the model of a relativistic thin-shell void in the expanding universe. (1) Adopting McVittie (MV) spacetime as a background universe, we investigate the dynamics of an uncompensated void with negative MV mass. Although the motion itself is quite different from that of a compensated void, as shown by Haines & Harris (1993), the present peculiar velocities are not affected by MV mass. (2) We discuss how precisely the formula in the linear perturbation theory applies to nonlinear relativistic voids, using the results in (1) as well as the previous results for the homogeneous background (Sakai, Maeda, & Sato 1993). (3) We re-examine the effect of the cosmic microwave background radiation. Contrary to the results of Pim & Lake (1986, 1988), we find that the effect is negligible. We show that their results are due to inappropriate initial conditions. Our results (1)-(3) suggest that the formula in the linear perturbation theory is approximately valid even for nonlinear voids.Comment: 12 pages, aastex, 4 ps figures separate, Fig.2 added, to appear in Ap
    • …
    corecore