29 research outputs found

    The multiple faces of self-assembled lipidic systems

    Get PDF
    Lipids, the building blocks of cells, common to every living organisms, have the propensity to self-assemble into well-defined structures over short and long-range spatial scales. The driving forces have their roots mainly in the hydrophobic effect and electrostatic interactions. Membranes in lamellar phase are ubiquitous in cellular compartments and can phase-separate upon mixing lipids in different liquid-crystalline states. Hexagonal phases and especially cubic phases can be synthesized and observed in vivo as well. Membrane often closes up into a vesicle whose shape is determined by the interplay of curvature, area difference elasticity and line tension energies, and can adopt the form of a sphere, a tube, a prolate, a starfish and many more. Complexes made of lipids and polyelectrolytes or inorganic materials exhibit a rich diversity of structural morphologies due to additional interactions which become increasingly hard to track without the aid of suitable computer models. From the plasma membrane of archaebacteria to gene delivery, self-assembled lipidic systems have left their mark in cell biology and nanobiotechnology; however, the underlying physics is yet to be fully unraveled

    Highly Efficient Cardiac Differentiation of Human Embryonic Stem Cells for Cardiac Repair

    No full text
    Heart failure is a leading cause of death in United States. One of the causes of heart failure is associated with the death or loss of cardiomyocytes (CMs). Since adult CMs do not regenerate, their death permanently compromises myocardial contractile function. Stem cell transplantation is one therapeutic strategy to replace damaged or lost myocardial tissue to restore cardiac function. Embryonic stem cells (ESCs) are an attractive population for cardiac repair because they can self-renew unlimitedly and differentiate into all cell types including CMs. Furthermore, ESC derived CMs can functionally integrate with the recipient organ and improve heart function after transplantation. However, a major challenge in ESC-based cardiac therapies is that the differentiation efficiency of ESCs into CMs has been very low (~1%). And large numbers of cells are required for administration for each patient. In this study, a protocol for efficient generation of CMs from hESCs was explored by optimizing various staged components in the microenvironment. Specifically, I 1) developed Honeycomb Microwell chips to generate homogeneous EB for CM differentiation; 2) optimized Actvin A/BMP4 concentration for CM differentiation; 3) optimized effects of extracellular matrix (ECM) signaling and investigated some mechanisms of ECM signaling on CM differentiation. The optimized protocols reproducibly generate approximately 70% CMs from H7 and H9 hESCs. These hESC derived CMs can now be enriched and tested for their ability to enhance cardiac function in preclinical animal models and for utility in drug discovery for future study

    Combinatorial fibronectin and laminin signaling promote highly efficient cardiac differentiation of human embryonic stem cells.

    No full text
    Cardiomyocytes (CMs) differentiated from human embryonic stem cells (hESCs) are a promising and potentially unlimited cell source for myocardial repair and regeneration. Recently, multiple methodologies-primarily based on the optimization of growth factors-have been described for efficient cardiac differentiation of hESCs. However, the role of extracellular matrix (ECM) signaling in CM differentiation has not yet been explored fully. This study examined the role of ECM signaling in the efficient generation of CMs from both H7 and H9 ESCs. The hESCs were differentiated on ECM substrates composed of a range of fibronectin (FN) and laminin (LN) ratios and gelatin and evaluated by the fluorescence activated cell scanning (FACS) analysis on day 14. Of the ECM substrates examined, the 70:30 FN:LN reproducibly generated the greatest numbers of CMs from both hESC lines. Moreover, the LN receptor integrin β4 (ITGB4) and FN receptor integrin β5 (ITGB5) genes, jointly with increased phosphorylated focal adhension kinase and phosphorylated extracellular signal-regulated kinases (p-ERKs), were up-regulated over 13-fold in H7 and H9 cultured on 70:30 FN:LN compared with gelatin. Blocking studies confirmed the role of all these molecules in CM specification, suggesting that the 70:30 FN:LN ECM promotes highly efficient differentiation of CMs through the integrin-mediated MEK/ERK signaling pathway. Lastly, the data suggest that FN:LN-induced signaling utilizes direct cell-to-cell signaling from distinct ITGB4(+) and ITGB5(+) cells

    PPARγ Interaction with UBR5/ATMIN Promotes DNA Repair to Maintain Endothelial Homeostasis

    No full text
    Summary: Using proteomic approaches, we uncovered a DNA damage response (DDR) function for peroxisome proliferator activated receptor γ (PPARγ) through its interaction with the DNA damage sensor MRE11-RAD50-NBS1 (MRN) and the E3 ubiquitin ligase UBR5. We show that PPARγ promotes ATM signaling and is essential for UBR5 activity targeting ATM interactor (ATMIN). PPARγ depletion increases ATMIN protein independent of transcription and suppresses DDR-induced ATM signaling. Blocking ATMIN in this context restores ATM activation and DNA repair. We illustrate the physiological relevance of PPARγ DDR functions by using pulmonary arterial hypertension (PAH) as a model that has impaired PPARγ signaling related to endothelial cell (EC) dysfunction and unresolved DNA damage. In pulmonary arterial ECs (PAECs) from PAH patients, we observed disrupted PPARγ-UBR5 interaction, heightened ATMIN expression, and DNA lesions. Blocking ATMIN in PAH PAEC restores ATM activation. Thus, impaired PPARγ DDR functions may explain the genomic instability and loss of endothelial homeostasis in PAH. : Li et al. identify PPARγ interactions with MRN and UBR5. PPARγ promotes UBR5-mediated ATMIN degradation, necessary for ATM activation upon DNA damage. Pulmonary arterial hypertension (PAH) endothelial cells exhibit genomic instability and disrupted PPARγ-UBR5 interaction. Blocking ATMIN restores ATM signaling in these cells, highlighting the significance of the PPARγ-ATMIN axis. Keywords: PPARγ, DNA damage, vascular biology, pulmonary hypertension, endothelial cells, ATM, MR
    corecore