27 research outputs found
A-dependence of nuclear transparency in quasielastic A(e,e'p) at high Q^2
The A-dependence of the quasielastic A(e,e'p) reaction has been studied at
SLAC with H-2, C, Fe, and Au nuclei at momentum transfers Q^2 = 1, 3, 5, and
6.8 (GeV/c)^2. We extract the nuclear transparency T(A,Q^2), a measure of the
average probability that the struck proton escapes from the nucleus A without
interaction. Several calculations predict a significant increase in T with
momentum transfer, a phenomenon known as Color Transparency. No significant
rise within errors is seen for any of the nuclei studied.Comment: 5 pages incl. 2 figures, Caltech preprint OAP-73
Momentum transfer dependence of nuclear transparency from the quasielastic 12C(e,e’p) reaction
The cross section for quasielastic 12C(e,e’p) scattering has been measured at momentum transfer Q2=1, 3, 5, and 6.8 (GeV/c)2. The results are consistent with scattering from a single nucleon as the dominant process. The nuclear transparency is obtained and compared with theoretical calculations that incorporate color transparency effects. No significant rise of the transparency with Q2 is observed
Inclusive electron scattering from nuclei at x≃1
The inclusive A(e,e′) cross section for x≃1 was measured on 2H, C, Fe, and Au for momentum transfers Q2 from 1 to 6.8 (GeV/c)2. The scaling behavior of the data was examined in the region of transition from y scaling to x scaling. Throughout this transitional region, the data exhibit ξ scaling, reminiscent of the Bloom-Gilman duality seen in free nucleon scattering
Evidence for virtual Compton scattering from the proton
In virtual Compton scattering an electron is scattered off a nucleon such that the nucleon emits a photon. We show that these events can be selected experimentally, and present the first evidence for virtual Compton scattering from the proton in data obtained at the Stanford Linear Accelerator Center. The angular and energy dependence of the data is well described by a calculation that includes the coherent sum of electron and proton radiation
Precision measurement of the deuteron spin structure function
We report on a high-statistics measurement of the deuteron spin structure function g[sup d][sub 1] at a beam energy of 29 GeV in the kinematic range 0.029 < x < 0.8 and 1 < Q2 < 10 (GeV/c)2. The integral Gamma [sup d][sub 1] = (integral)[sup 1][sub 0]g[sup d][sub 1]dx evaluated at fixed Q2 = 3 (GeV/c)2 gives 0.042 ± 0.003(stat) ± 0.004(syst). Combining this result with our earlier measurement of g[sup p][sub 1], we find Gamma [sup p][sub 1]- Gamma [sup n][sub 1] = 0.163 ± 0.010(stat) ± 0.016(syst), which agrees with the prediction of the Bjorken sum rule with O( alpha [sup 3][sub s]) corrections, Gamma [sup p][sub 1]- Gamma [sup n][sub 1] = 0.171 ± 0.008. We find the quark contribution to the proton helicity to be Delta q = 0.30 ± 0.06
Measurements of R=sigma_L/sigma_T for 0.03<x<0.1 and Fit to World Data
Measurements were made at SLAC of the cross section for scattering 29 GeV
electrons from carbon at a laboratory angle of 4.5 degrees, corresponding to
0.03<x<0.1 and 1.3<Q^2<2.7 GeV^2. Values of R=sigma_L/sigma_T were extracted in
this kinematic range by comparing these data to cross sections measured at a
higher beam energy by the NMC collaboration. The results are in reasonable
agreement with pQCD calculations and with extrapolations of the R1990
parameterization of previous data. A new fit is made including these data and
other recent results.Comment: 8 pages, 4 figures, late
Next-to-Leading Order QCD Analysis of Polarized Deep Inelastic Scattering Data
We present a Next-to-Leading order perturbative QCD analysis of world data on
the spin dependent structure functions , and , including
the new experimental information on the dependence of . Careful
attention is paid to the experimental and theoretical uncertainties. The data
constrain the first moments of the polarized valence quark distributions, but
only qualitatively constrain the polarized sea quark and gluon distributions.
The NLO results are used to determine the dependence of the ratio
and evolve the experimental data to a constant . We
determine the first moments of the polarized structure functions of the proton
and neutron and find agreement with the Bjorken sum rule.Comment: 21 pages, 4 figures; final version to be published in Phys. Lett. B.
References updated. Uses elsart.cls version 1996/04/22, 2e-1.4
Recommended from our members
Generation of Narrow-Band Coherent Tunable Terahertz Radiation Using a Laser-Modulated Electron Beam
Measurements of the Q2-Dependence of the Proton and Deuteron Spin Structure Functions g1p and g1d
The ratio g1/F1 has been measured over the range 0.031 (GeV/c)2. A trend is observed for g1/F1 to decrease at lower Q2. Fits to world data with and without a possible Q2-dependence in g1/F1 are in agreement with the Bjorken sum rule, but Delta_q is substantially less than the quark-parton model expectation