121 research outputs found

    Loss of Ep-CAM (CO17-1A) expression predicts survival in patients with gastric cancer

    Get PDF
    Preoperative staging of gastric cancer is difficult and not optimal. The TNM stage is an important prognostic factor, but it can only be assessed reliably after surgery. Therefore, there is need for additional, reliable prognostic factors that can be determined preoperatively in order to select patients who might benefit from (neo) adjuvant treatment. Expression of immunohistochemical markers was demonstrated to be associated with tumour progression and metastasis. The expression of p53, CD44 (splice variants v5, v6 and v9), E-cadherin, Ep-CAM (CO17-1A antigen) and c-erB2/neu were investigated in tumour tissues of 300 patients from the Dutch Gastric Cancer Trial, investigating the value of extended lymphadenectomy compared to that of limited lymphadenectomy). The expression of tumour markers was analysed with respect to patient survival. Patients without loss of Ep-CAM-expression of tumour cells (19%) had a significantly better 10-year survival (P<0.0001) compared to patients with any loss: 42% (s.e.=7%) vs 22% (s.e.=3%). Patients with CD44v6 (VFF18) expression in more than 25% of the tumour cells (69% of the patients) also had a significantly better survival (P=0.01) compared to patients with expression in less than 25% of the tumour cells: 10 year survival rate of 29% (s.e.=3%) vs 19% (s.e.=4%). The prognostic value of both markers was stronger in stages I and II, and independent of the TNM stage. Ep-CAM and CD44v6-expression provides prognostic information additional to the TNM stage. Loss of Ep-CAM-expression identifies aggressive tumours especially in patients with stage I and II disease. This information may be helpful in selecting patients suitable for surgery or for additional treatment pre- or postoperatively

    Ep-CAM expression in squamous cell carcinoma of the esophagus: a potential therapeutic target and prognostic marker

    Get PDF
    BACKGROUND: To evaluate the expression and test the clinical significance of the epithelial cellular adhesion molecule (Ep-CAM) in esophageal squamous cell carcinoma (SCC) to check the suitability of esophageal SCC patients for Ep-CAM directed targeted therapies. METHODS: The Ep-CAM expression was immunohistochemically investigated in 70 primary esophageal SCCs using the monoclonal antibody Ber-EP4. For the interpretation of the staining results, we used a standardized scoring system ranging from 0 to 3+. The survival analysis was calculated from 53 patients without distant metastasis, with R0 resection and at least 2 months of clinical follow-up. RESULTS: Ep-CAM neo-expression was observed in 79% of the tumors with three expression levels, 1+ (26%), 2+ (11%) and 3+ (41%). Heterogeneous expression was observed at all expression levels. Interestingly, tumors with 3+ Ep-CAM expression conferred a significantly decreased median relapse-free survival period (log rank, p = 0.0001) and median overall survival (log rank, p = 0.0003). Multivariate survival analysis disclosed Ep-CAM 3+ expression as independent prognostic factor. CONCLUSION: Our results suggest Ep-CAM as an attractive molecule for targeted therapy in esophageal SCC. Considering the discontenting results of the current adjuvant concepts for esophageal SCC patients, Ep-CAM might provide a promising target for an adjuvant immunotherapeutic intervention

    EpCAM an immunotherapeutic target for gastrointestinal malignancy: current experience and future challenges

    Get PDF
    Despite advances in surgery and adjuvant regimes, gastrointestinal malignancy remains a major cause of neoplastic mortality. Immunotherapy is an emerging and now successful treatment modality for numerous cancers that relies on the manipulation of the immune system and its effector functions to eradicate tumour cells. The discovery that the pan-epithelial homotypic cell adhesion molecule EpCAM is differentially expressed on gastrointestinal tumours has made this a viable target for immunotherapy. Clinical trials using naked anti EpCAM antibody, immunoconjugates, anti-idiotypic and dendritic cell vaccines have met variable success. The murine IgG2a Edrecolomab was shown to reduce mortality and morbidity at a level slightly lower than treatment with 5FU and Levamisole when administered to patients with advanced colorectal carcinoma in a large randomised controlled trial. Fully human and trifunctional antibodies that specifically recruit CD3-positive lymphocytes are now being tested clinically in the treatment of minimal residual disease and ascites. Although clinical trials are in their infancy, the future may bring forth an EpCAM mediated approach for the effective activation and harnessing of the immune system to destroy a pathological aberrance that has otherwise largely escaped its attention

    Initial activation of EpCAM cleavage via cell-to-cell contact

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epithelial cell adhesion molecule EpCAM is a transmembrane glycoprotein, which is frequently over-expressed in simple epithelia, progenitors, embryonic and tissue stem cells, carcinoma and cancer-initiating cells. Besides functioning as a homophilic adhesion protein, EpCAM is an oncogenic receptor that requires regulated intramembrane proteolysis for activation of its signal transduction capacity. Upon cleavage, the extracellular domain EpEX is released as a soluble ligand while the intracellular domain EpICD translocates into the cytoplasm and eventually into the nucleus in combination with four-and-a-half LIM domains protein 2 (FHL2) and Ξ²-catenin, and drives cell proliferation.</p> <p>Methods</p> <p>EpCAM cleavage, induction of the target genes, and transmission of proliferation signals were investigated under varying density conditions using confocal laser scanning microscopy, immunoblotting, cell counting, and conditional cell systems.</p> <p>Results</p> <p>EpCAM cleavage, induction of the target genes, and transmission of proliferation signals were dependent on adequate cell-to-cell contact. If cell-to-cell contact was prohibited EpCAM did not provide growth advantages. If cells were allowed to undergo contact to each other, EpCAM transmitted proliferation signals based on signal transduction-related cleavage processes. Accordingly, the pre-cleaved version EpICD was not dependent on cell-to-cell contact in order to induce <it>c-myc </it>and cell proliferation, but necessitated nuclear translocation. For the case of contact-inhibited cells, although cleavage of EpCAM occurred, nuclear translocation of EpICD was reduced, as were EpCAM effects.</p> <p>Conclusion</p> <p>Activation of EpCAM's cleavage and oncogenic capacity is dependent on cellular interaction (juxtacrine) to provide for initial signals of regulated intramembrane proteolysis, which then support signalling via soluble EpEX (paracrine).</p

    WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics

    Get PDF
    Prostate cancer cells with stem cell characteristics were identified in human prostate cancer cell lines by their ability to form from single cells self-renewing prostaspheres in non-adherent cultures. Prostaspheres exhibited heterogeneous expression of proliferation, differentiation and stem cell-associated makers CD44, ABCG2 and CD133. Treatment with WNT inhibitors reduced both prostasphere size and self-renewal. In contrast, addition of Wnt3a caused increased prostasphere size and self-renewal, which was associated with a significant increase in nuclear Ξ’-catenin, keratin 18, CD133 and CD44 expression. As a high proportion of LNCaP and C4-2B cancer cells express androgen receptor we determined the effect of the androgen receptor antagonist bicalutamide. Androgen receptor inhibition reduced prostasphere size and expression of PSA, but did not inhibit prostasphere formation. These effects are consistent with the androgen-independent self-renewal of cells with stem cell characteristics and the androgen-dependent proliferation of transit amplifying cells. As the canonical WNT signaling effector Ξ’-catenin can also associate with the androgen receptor, we propose a model for tumour propagation involving a balance between WNT and androgen receptor activity. That would affect the self-renewal of a cancer cell with stem cell characteristics and drive transit amplifying cell proliferation and differentiation. In conclusion, we provide evidence that WNT activity regulates the self-renewal of prostate cancer cells with stem cell characteristics independently of androgen receptor activity. Inhibition of WNT signaling therefore has the potential to reduce the self-renewal of prostate cancer cells with stem cell characteristics and improve the therapeutic outcome.Peer reviewe

    Abnormal Placental Development and Early Embryonic Lethality in EpCAM-Null Mice

    Get PDF
    BACKGROUND: EpCAM (CD326) is encoded by the tacstd1 gene and expressed by a variety of normal and malignant epithelial cells and some leukocytes. Results of previous in vitro experiments suggested that EpCAM is an intercellular adhesion molecule. EpCAM has been extensively studied as a potential tumor marker and immunotherapy target, and more recent studies suggest that EpCAM expression may be characteristic of cancer stem cells. METHODOLOGY/PRINCIPAL FINDINGS: To gain insights into EpCAM function in vivo, we generated EpCAM -/- mice utilizing an embryonic stem cell line with a tacstd1 allele that had been disrupted. Gene trapping resulted in a protein comprised of the N-terminus of EpCAM encoded by 2 exons of the tacstd1 gene fused in frame to betageo. EpCAM +/- mice were viable and fertile and exhibited no obvious abnormalities. Examination of EpCAM +/- embryos revealed that betageo was expressed in several epithelial structures including developing ears (otocysts), eyes, branchial arches, gut, apical ectodermal ridges, lungs, pancreas, hair follicles and others. All EpCAM -/- mice died in utero by E12.5, and were small, developmentally delayed, and displayed prominent placental abnormalities. In developing placentas, EpCAM was expressed throughout the labyrinthine layer and by spongiotrophoblasts as well. Placentas of EpCAM -/- embryos were compact, with thin labyrinthine layers lacking prominent vascularity. Parietal trophoblast giant cells were also dramatically reduced in EpCAM -/- placentas. CONCLUSION: EpCAM was required for differentiation or survival of parietal trophoblast giant cells, normal development of the placental labyrinth and establishment of a competent maternal-fetal circulation. The findings in EpCAM-reporter mice suggest involvement of this molecule in development of vital organs including the gut, kidneys, pancreas, lungs, eyes, and limbs

    Adenoviral vector-mediated expression of a gene encoding secreted, EpCAM-targeted carboxylesterase-2 sensitises colon cancer spheroids to CPT-11

    Get PDF
    CPT-11 (irinotecan or 7-ethyl-10[4-(1-piperidino)-1-piperidino] carbonyloxycamptothecin) is an anticancer agent in use for the treatment of colon cancer. In order to be fully active, CPT-11 needs to be converted into SN-38 (7-ethyl-10-hydroxycamptothecin) by the enzyme carboxylesterase (CE). In humans, only a minority of CPT-11 is converted to SN-38. To increase the antitumour effect of CPT-11 by gene-directed enzyme prodrug therapy, we constructed a replication-deficient adenoviral vector Ad.C28-sCE2 containing a fusion gene encoding a secreted form of human liver CE2 targeted to the surface antigen epithelial cell adhesion molecule (EpCAM) that is highly expressed on most colon carcinoma cells. By targeting CE2 to EpCAM, the enzyme should accumulate specifically in tumours and leakage into the circulation should be minimised. Ad.C28-sCE2-transduced colon carcinoma cells expressed and secreted active CE that bound specifically to EpCAM-expressing cells. In sections of three-dimensional colon carcinoma spheroids transduced with Ad.C28-sCE2, it was shown that C28-sCE2 was capable of binding untransduced cells. Most importantly, treatment of these spheroids with nontoxic concentrations of CPT-11 resulted in growth inhibition comparable to treatment with SN-38. Therefore, Ad.C28-sCE2 holds promise in gene therapy approaches for the treatment of colon carcinoma

    Cellular and complement-dependent cytotoxicity of Ep-CAM-specific monoclonal antibody MT201 against breast cancer cell lines

    Get PDF
    MT201 is a fully human monoclonal IgG1 antibody with moderate affinity for epithelial cell adhesion molecule (Ep-CAM) being clinically developed for the treatment of carcinomas. Like many other clinically validated IgG1 monoclonal antibodies, MT201 primarily acts by antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Here, we analysed ADCC and CDC induced by MT201 and, as reference, trastuzumab against a panel of nine human breast cancer cell lines expressing distinct surface levels of Ep-CAM and human epithelial growth factor receptor type 2 antigen. Maximal cell lysis by ADCC by MT201 and trastuzumab in the presence of peripheral mononuclear cells did not significantly differ when averaged over the nine cell lines, but showed marked differences with respect to individual cell lines. The extent of cell lysis at intermediate surface target density was highly variable, suggesting a dominant influence of other susceptibility factors. Only one breast cancer cell line was eliminated via CDC, but only by MT201. Resistance to CDC appeared to correlate with high expression levels of complement resistance factors. Our present data as well as recent data on the prevalence and prognostic relevance of Ep-CAM expression in metastatic breast cancer suggest that Ep-CAM-specific monoclonal IgG1 antibodies may have a significant therapeutic potential in the treatment of breast cancer
    • …
    corecore