53 research outputs found

    A SUSY Inspired Simplified Model for the 750 GeV Diphoton Excess

    Get PDF
    The evidence for a new singlet scalar particle from the 750 GeV diphoton excess, and the absence of any other signal of new physics at the LHC so far, suggest the existence of new coloured scalars. To study this possibility, we propose a supersymmetry inspired simplified model, extending the Standard Model with a singlet scalar and with heavy scalar fields carrying both colour and electric charges -- the `squarks'. To allow the latter to decay, and to generate the dark matter of the Universe, we also add a neutral fermion to the particle content. We show that this model provides a two-parameter fit to the observed diphoton excess consistently with cosmology, while the allowed parameter space is bounded by the consistency of the model. In the context of our simplified model this implies the existence of other supersymmetric particles accessible at the LHC, rendering this scenario falsifiable. If this excess persists, it will imply a paradigm shift in assessing supersymmetry breaking and the role of scalars in low scale physics.Comment: 7 pages, 2 figures, SUSY incarnat

    Coherent photo-thermal noise cancellation in a dual-wavelength optical cavity for narrow-linewidth laser frequency stabilisation

    Full text link
    Optical resonators are used for the realisation of ultra-stable frequency lasers. The use of high reflectivity multi-band coatings allows the frequency locking of several lasers of different wavelengths to a single cavity. While the noise processes for single wavelength cavities are well known, the correlation caused by multi-stack coatings has as yet not been analysed experimentally. In our work, we stabilise the frequency of a 729 729\,nm and a 1069 1069\,nm laser to one mirror pair and determine the residual-amplitude modulation (RAM) and photo-thermal noise (PTN). We find correlations in PTN between the two lasers and observe coherent cancellation of PTN for the 1069 1069\,nm coating. We show that the fractional frequency instability of the 729 729\,nm laser is limited by RAM at 1×10−141\times10^{-14}. The instability of the 1069 1069\,nm laser is at 3×10−153\times10^{-15} close to the thermal noise limit of 1.5×10−151.5\times10^{-15}.Comment: 17 pages, 5 figure

    Diboson-Jets and the Search for Resonant Zh Production

    Full text link
    New particles at the TeV-scale may have sizeable decay rates into boosted Higgs bosons or other heavy scalars. Here, we investigate the possibility of identifying such processes when the Higgs/scalar subsequently decays into a pair of W bosons, constituting a highly distinctive "diboson-jet." These can appear as a simple dilepton (plus MET) configuration, as a two-prong jet with an embedded lepton, or as a four-prong jet. We study jet substructure methods to discriminate these objects from their dominant backgrounds. We then demonstrate the use of these techniques in the search for a heavy spin-one Z' boson, such as may arise from strong dynamics or an extended gauge sector, utilizing the decay chain Z' -> Zh -> Z(WW^(*)). We find that modes with multiple boosted hadronic Zs and Ws tend to offer the best prospects for the highest accessible masses. For 100/fb luminosity at the 14 TeV LHC, Z' decays into a standard 125 GeV Higgs can be observed with 5-sigma significance for masses of 1.5-2.5 TeV for a range of models. For a 200 GeV Higgs (requiring nonstandard couplings, such as fermiophobic), the reach may improve to up to 2.5-3.0 TeV.Comment: 23 pages plus appendices, 9 figure

    Inserting single Cs atoms into an ultracold Rb gas

    Full text link
    We report on the controlled insertion of individual Cs atoms into an ultracold Rb gas at about 400 nK. This requires to combine the techniques necessary for cooling, trapping and manipulating single laser cooled atoms around the Doppler temperature with an experiment to produce ultracold degenerate quantum gases. In our approach, both systems are prepared in separated traps and then combined. Our results pave the way for coherent interaction between a quantum gas and a single or few neutral atoms of another species

    Simplified Models for LHC New Physics Searches

    Get PDF
    This document proposes a collection of simplified models relevant to the design of new-physics searches at the LHC and the characterization of their results. Both ATLAS and CMS have already presented some results in terms of simplified models, and we encourage them to continue and expand this effort, which supplements both signature-based results and benchmark model interpretations. A simplified model is defined by an effective Lagrangian describing the interactions of a small number of new particles. Simplified models can equally well be described by a small number of masses and cross-sections. These parameters are directly related to collider physics observables, making simplified models a particularly effective framework for evaluating searches and a useful starting point for characterizing positive signals of new physics. This document serves as an official summary of the results from the "Topologies for Early LHC Searches" workshop, held at SLAC in September of 2010, the purpose of which was to develop a set of representative models that can be used to cover all relevant phase space in experimental searches. Particular emphasis is placed on searches relevant for the first ~50-500 pb-1 of data and those motivated by supersymmetric models. This note largely summarizes material posted at http://lhcnewphysics.org/, which includes simplified model definitions, Monte Carlo material, and supporting contacts within the theory community. We also comment on future developments that may be useful as more data is gathered and analyzed by the experiments.Comment: 40 pages, 2 figures. This document is the official summary of results from "Topologies for Early LHC Searches" workshop (SLAC, September 2010). Supplementary material can be found at http://lhcnewphysics.or

    Defining the optimal dose of radiation in leukemic patients with extramedullary lesions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Analysis of the clinical response of extramedullary lesions in leukemic patients treated with radiation therapy (RT) and defining the optimal dose of radiation.</p> <p>Methods</p> <p>Forty-two extramedullary lesions found in 24 leukemic patients treated with RT were reviewed. The radiation was delivered usually 2 Gy/day, up to a median of 20 Gy (range: 18.0-40.8). The clinical response and symptom palliation effect were analyzed. The factors affecting the response were also included in the analysis.</p> <p>Results</p> <p>After a median time of 7.9 weeks, the overall response rate was 76.2%. A complete response (CR) was achieved in 35.7%, a partial response in 40.5%. The symptom was relieved in 85.7% sites. The overall response rate was better in patients whose initial tumor size was smaller than 10 cm<sup>2 </sup>(<it>p = 0.010</it>) or who were treated with more than 25 Gy (<it>p = 0.031</it>). The overall CR rate was also higher in those who had smaller tumors (smaller than 6 cm or 30 cm<sup>2</sup>) (<it>p = 0.015)</it>, or when the tumor was located in soft tissue (<it>p = 0.029</it>).</p> <p>Conclusions</p> <p>Extramedullary lesions in leukemic patients can be successfully treated with RT. The tumor response rate was excellent and symptom relief was achieved in almost all patients. There was a better response to treatment when the tumor was small or it was located in soft tissue. Although, there was no definite correlation between volume reduction and total dose, it seems that higher total dose more of than 25 Gy is needed for better response.</p

    Shedding Light on the Dark Sector with Direct WIMP Production

    Full text link
    A Weakly Interacting Massive Particle (WIMP) provides an attractive dark matter candidate, and should be within reach of the next generation of high-energy colliders. We consider the process of direct WIMP pair-production, accompanied by an initial-state radiation photon, in electron-positron collisions at the proposed International Linear Collider (ILC). We present a parametrization of the differential cross section for this process which conveniently separates the model-independent information provided by cosmology from the model-dependent inputs from particle physics. As an application, we consider two simple models, one supersymmetric, and another of the "universal extra dimensions" (UED) type. The discovery reach of the ILC and the expected precision of parameter measurements are studied in each model. In addition, for each of the two examples, we also investigate the ability of the ILC to distinguish between the two models through a shape-discrimination analysis of the photon energy spectrum. We show that with sufficient beam polarization the alternative model interpretation can be ruled out in a large part of the relevant parameter space.Comment: 21 pages, 9 figure

    Authors' Reply

    No full text
    • …
    corecore