168 research outputs found

    Étude spectrale minutieuse de processus moins indécis que les autres

    Get PDF
    International audienceIn this paper we are looking for quantitative estimates for the convergene to equilibrium of non reversible Markov processes, especialy in short times. The models studied are simple enough to get an explicit expression of the L2 distance betweeen the semigroup and the invariant measure throught time and to compare it with the corresponding reversible cases

    Translated Poisson approximation to equilibrium distributions of Markov population processes

    Full text link
    The paper is concerned with the equilibrium distributions of continuous-time density dependent Markov processes on the integers. These distributions are known typically to be approximately normal, and the approximation error, as measured in Kolmogorov distance, is of the smallest order that is compatible with their having integer support. Here, an approximation in the much stronger total variation norm is established, without any loss in the asymptotic order of accuracy; the approximating distribution is a translated Poisson distribution having the same variance and (almost) the same mean. Our arguments are based on the Stein-Chen method and Dynkin's formula.Comment: 18 page

    On Exceptional Times for generalized Fleming-Viot Processes with Mutations

    Full text link
    If Y\mathbf Y is a standard Fleming-Viot process with constant mutation rate (in the infinitely many sites model) then it is well known that for each t>0t>0 the measure Yt\mathbf Y_t is purely atomic with infinitely many atoms. However, Schmuland proved that there is a critical value for the mutation rate under which almost surely there are exceptional times at which Y\mathbf Y is a finite sum of weighted Dirac masses. In the present work we discuss the existence of such exceptional times for the generalized Fleming-Viot processes. In the case of Beta-Fleming-Viot processes with index α]1,2[\alpha\in\,]1,2[ we show that - irrespectively of the mutation rate and α\alpha - the number of atoms is almost surely always infinite. The proof combines a Pitman-Yor type representation with a disintegration formula, Lamperti's transformation for self-similar processes and covering results for Poisson point processes

    The Mean Drift: Tailoring the Mean Field Theory of Markov Processes for Real-World Applications

    Full text link
    The statement of the mean field approximation theorem in the mean field theory of Markov processes particularly targets the behaviour of population processes with an unbounded number of agents. However, in most real-world engineering applications one faces the problem of analysing middle-sized systems in which the number of agents is bounded. In this paper we build on previous work in this area and introduce the mean drift. We present the concept of population processes and the conditions under which the approximation theorems apply, and then show how the mean drift is derived through a systematic application of the propagation of chaos. We then use the mean drift to construct a new set of ordinary differential equations which address the analysis of population processes with an arbitrary size

    Synthesizing and tuning chemical reaction networks with specified behaviours

    Full text link
    We consider how to generate chemical reaction networks (CRNs) from functional specifications. We propose a two-stage approach that combines synthesis by satisfiability modulo theories and Markov chain Monte Carlo based optimisation. First, we identify candidate CRNs that have the possibility to produce correct computations for a given finite set of inputs. We then optimise the reaction rates of each CRN using a combination of stochastic search techniques applied to the chemical master equation, simultaneously improving the of correct behaviour and ruling out spurious solutions. In addition, we use techniques from continuous time Markov chain theory to study the expected termination time for each CRN. We illustrate our approach by identifying CRNs for majority decision-making and division computation, which includes the identification of both known and unknown networks.Comment: 17 pages, 6 figures, appeared the proceedings of the 21st conference on DNA Computing and Molecular Programming, 201

    A new approach to quantitative propagation of chaos for drift, diffusion and jump processes

    Full text link
    This paper is devoted the the study of the mean field limit for many-particle systems undergoing jump, drift or diffusion processes, as well as combinations of them. The main results are quantitative estimates on the decay of fluctuations around the deterministic limit and of correlations between particles, as the number of particles goes to infinity. To this end we introduce a general functional framework which reduces this question to the one of proving a purely functional estimate on some abstract generator operators (consistency estimate) together with fine stability estimates on the flow of the limiting nonlinear equation (stability estimates). Then we apply this method to a Boltzmann collision jump process (for Maxwell molecules), to a McKean-Vlasov drift-diffusion process and to an inelastic Boltzmann collision jump process with (stochastic) thermal bath. To our knowledge, our approach yields the first such quantitative results for a combination of jump and diffusion processes.Comment: v2 (55 pages): many improvements on the presentation, v3: correction of a few typos, to appear In Probability Theory and Related Field

    Functional limit theorems for random regular graphs

    Full text link
    Consider d uniformly random permutation matrices on n labels. Consider the sum of these matrices along with their transposes. The total can be interpreted as the adjacency matrix of a random regular graph of degree 2d on n vertices. We consider limit theorems for various combinatorial and analytical properties of this graph (or the matrix) as n grows to infinity, either when d is kept fixed or grows slowly with n. In a suitable weak convergence framework, we prove that the (finite but growing in length) sequences of the number of short cycles and of cyclically non-backtracking walks converge to distributional limits. We estimate the total variation distance from the limit using Stein's method. As an application of these results we derive limits of linear functionals of the eigenvalues of the adjacency matrix. A key step in this latter derivation is an extension of the Kahn-Szemer\'edi argument for estimating the second largest eigenvalue for all values of d and n.Comment: Added Remark 27. 39 pages. To appear in Probability Theory and Related Field

    Systemic Risk and Default Clustering for Large Financial Systems

    Full text link
    As it is known in the finance risk and macroeconomics literature, risk-sharing in large portfolios may increase the probability of creation of default clusters and of systemic risk. We review recent developments on mathematical and computational tools for the quantification of such phenomena. Limiting analysis such as law of large numbers and central limit theorems allow to approximate the distribution in large systems and study quantities such as the loss distribution in large portfolios. Large deviations analysis allow us to study the tail of the loss distribution and to identify pathways to default clustering. Sensitivity analysis allows to understand the most likely ways in which different effects, such as contagion and systematic risks, combine to lead to large default rates. Such results could give useful insights into how to optimally safeguard against such events.Comment: in Large Deviations and Asymptotic Methods in Finance, (Editors: P. Friz, J. Gatheral, A. Gulisashvili, A. Jacqier, J. Teichmann) , Springer Proceedings in Mathematics and Statistics, Vol. 110 2015
    corecore