97 research outputs found

    Bone marrow niche trafficking of miR-126 controls the self-renewal of leukemia stem cells in chronic myelogenous leukemia

    Get PDF
    Leukemia stem cells (LSCs) in individuals with chronic myelogenous leukemia (CML) (hereafter referred to as CML LSCs) are responsible for initiating and maintaining clonal hematopoiesis. These cells persist in the bone marrow (BM) despite effective inhibition of BCR–ABL kinase activity by tyrosine kinase inhibitors (TKIs). Here we show that although the microRNA (miRNA) miR-126 supported the quiescence, self-renewal and engraftment capacity of CML LSCs, miR-126 levels were lower in CML LSCs than in long-term hematopoietic stem cells (LT-HSCs) from healthy individuals. Downregulation of miR-126 levels in CML LSCs was due to phosphorylation of Sprouty-related EVH1-domain-containing 1 (SPRED1) by BCR–ABL, which led to inhibition of the RAN–exportin-5–RCC1 complex that mediates miRNA maturation. Endothelial cells (ECs) in the BM supply miR-126 to CML LSCs to support quiescence and leukemia growth, as shown using mouse models of CML in which Mir126a (encoding miR-126) was conditionally knocked out in ECs and/or LSCs. Inhibition of BCR–ABL by TKI treatment caused an undesired increase in endogenous miR-126 levels, which enhanced LSC quiescence and persistence. Mir126a knockout in LSCs and/or ECs, or treatment with a miR-126 inhibitor that targets miR-126 expression in both LSCs and ECs, enhanced the in vivo anti-leukemic effects of TKI treatment and strongly diminished LSC leukemia-initiating capacity, providing a new strategy for the elimination of LSCs in individuals with CML

    Völkisch und sozial? : Neonazistische Agitation gegen die neue EU-Freizügigkeit für Arbeitnehmerinnen

    Get PDF
    Wnt/β-catenin signalling pathway is crucial for the formation of many tissues and organs during development. In recent years, this pathway has also been found to regulate the biology of stem cells in the intestine and probably in other organs in adult life. Abnormal activation of Wnt/β-catenin signalling, which controls the expression of a high number of genes, is critical for the initiation and progression of most colorectal cancers. In line with this, the gene expression signature induced by activation of the Wnt/β-catenin pathway defines the intestinal stem cells present at the bottom of the crypts and also colon cancer stem cells. This supports the importance of inhibitors of the Wnt/β-catenin pathway as potential agents in colorectal cancer therapy. However, the complexity, wide activity in the organism modulating the biology of several cell types, and characteristics of this pathway have delayed the identification of suitable targets and so, the development of such inhibitors that are only now reaching the clinic.Peer reviewe

    Paternal effects on early embryogenesis

    Get PDF
    Historically, less attention has been paid to paternal effects on early embryogenesis than maternal effects. However, it is now apparent that certain male factor infertility phenotypes are associated with increased DNA fragmentation and/or chromosome aneuploidies that may compromise early embryonic development. In addition, there is a growing body of evidence that the fertilizing sperm has more function than just carrying an intact, haploid genome. The paternally inherited centrosome is essential for normal fertilization, and the success of higher order chromatin packaging may impact embryogenesis. Epigenetic modifications of sperm chromatin may contribute to the reprogramming of the genome, and sperm delivered mRNA has also been hythesized to be necessary for embryogenesis. There is less information about the epigenetic factors affecting embryogenesis than genetic factors, but the epigenetics of gamete and early embryogenesis is a rapidly advancing field

    Temporal stability of the rumen microbiota in beef cattle, and response to diet and supplements

    Get PDF
    Acknowledgements Sampling of ruminal digesta was carried out at Scotland’s Rural College (SRUC) by Laura Nicoll, Lesley Deans and Claire Broadbent. Sequencing using Illumina MiSeq was carried out by Edinburgh Genomics, The University of Edinburgh. Edinburgh Genomics is partly supported through core grants from NERC (R8/H10/56), MRC (MR/K001744/1) and BBSRC (BB/J004243/1). Data were processed using the Maxwell High Performance Computing Cluster of the University of Aberdeen IT Service (www.abdn.ac.uk/staffnet/research/hpc.php), provided by Dell Inc. and supported by Alces Software. Funding This work was funded by the Rural and Environment Science and Analytical Services Division (RESAS) of the Scottish Government as a collaborative HEI project between The University of Aberdeen, The Roslin Institute, and Scotland’s Rural College (SRUC). The funding body had no role in the design of the study or collection, analysis, or interpretation of data or in writing the manuscript.Peer reviewedPublisher PD

    Anti-angiogenic alternatives to VEGF blockade

    Get PDF
    Angiogenesis is a major requirement for tumour formation and development. Anti-angiogenic treatments aim to starve the tumour of nutrients and oxygen and also guard against metastasis. The main anti-angiogenic agents to date have focused on blocking the pro-angiogenic vascular endothelial growth factors (VEGFs). While this approach has seen some success and has provided a proof of principle that such anti-angiogenic agents can be used as treatment, the overall outcome of VEGF blockade has been somewhat disappointing. There is a current need for new strategies in inhibiting tumour angiogenesis; this article will review current and historical examples in blocking various membrane receptors and components of the extracellular matrix important in angiogenesis. Targeting these newly discovered pro-angiogenic proteins could provide novel strategies for cancer therapy
    corecore