3,351 research outputs found

    3D multi-resolution mapping of Mars using CASP-GO ON HRSC, CRISM, CTX and HIRISE

    Get PDF
    Automated large-scale retrieval of stereo photogrammetric DTMs of Mars fall into three categories: use of COTS software such as BAE-SOCET®; private software such as the DLR-VICAR software suite and open source solutions such as the NASA Ames Stereo Pipeline (ASP). We describe here a novel open source system developed on the back of ASP known as CASP-GO (Tao et al., 2018) which has automated and extended ASP to be able to be applied to all modern single-pass or repeat-pass stereo photogrammetric datasets from 21st century systems such as HRSC, CTX and HiRISE, CASP-GO also includes an automated co-registration system which employs HRSC (itself linked to MOLA) as the base-map upon which all other DTMs are co-registered. We show an example here of this automated co-registration system applied to multi-resolution stacks including CRISM images. Several thousand multi-resolution 3D products, Digital Terrain Models (DTMs) and their corresponding orthorectified images (ORIs) have been generated and used in a wide variety of scientific studies, a few examples of which are shown here. Finally, a new method distributing these products providing long-term archiving and ease of access using DOIs is shown employing the ESA-PSA Guest Storage Facility and their corresponding display within the iMars webGIS system

    A branched luminescent multinuclear platinum(II) complex

    Get PDF
    Nonlinear optical properties of luminescent multinuclear platinum(II) complex of branched alkynyls in benzene solution are investigated at room temperature by using two-photon fluorescence (TPF) technique. It is found that the material shows unusual nonlinear optical characteristics under the excitation of near infrared femtosecond laser pulses. The self-focusing of laser beam energy during propagation of the laser pulses in the sample with large nonlinear coefficient for the refractive index is observed. Based on this phenomenon, a new method for measuring the nonlinear coefficient and two-photon absorption cross section of materials is proposed. © 2011 American Institute of Physics.published_or_final_versio

    A reactor-scale CFD model of soot formation during high-temperature pyrolysis and gasification of biomass

    Get PDF
    Soot generation is an important problem in high-temperature biomass gasification, which results in both air pollution and the contamination of gasification equipment. Due to the complex nature of biomass materials and the soot formation process, it is still a challenge to fully understand and describe the mechanisms of tar evolution and soot generation at the reactor scale. This knowledge gap thus motivates the development of a comprehensive computational fluid dynamics (CFD) soot formation algorithm for biomass gasification, where the soot precursor is modeled using a component-based pyrolysis framework to distinguish cellulose, hemicellulose and lignin. The model is first validated with pyrolysis experiments from different research groups, after which the soot generation during biomass steam gasification in a drop-tube furnace is studied under different operating temperatures (900–1200 \ub0C) and steam/biomass ratios. Compared with the predictions based on a detailed tar conversion model, the current algorithm captures the soot generation more reasonably although a simplified tar model is used. Besides, the influence of biomass lignin content and the impact of tar and soot consumptions on the soot yield is quantitatively studied. Moreover, the impact of surface growth on soot formation is also discussed. The current work demonstrates the feasibility of the coupled multiphase flow algorithm in the prediction of soot formation during biomass gasification with strong heat/mass transfer effects. In conclusion, the model is thus a useful tool for the analysis and optimization of industrial-scaled biomass gasification

    High-temperature pyrolysis modeling of a thermally thick biomass particle based on an MD-derived tar cracking model

    Get PDF
    Biomass pyrolysis in the thermally thick regime is an important thermochemical phenomenon encountered in many different types of reactors. In this paper, a particle-resolved algorithm for thermally thick biomass particle during high-temperature pyrolysis is established by using reactive molecular dynamics (MD) and computational fluid dynamics (CFD) methods. The temperature gradient inside the particle is computed with a heat transfer equation, and a multiphase flow algorithm is used to simulate the advection/diffusion both inside and outside the particle. Besides, to simulate the influence of intraparticle temperature gradient on the primary pyrolysis yields, a multistep kinetic scheme is used. Moreover, a new tar decomposition model is developed by reactive molecular dynamic simulations where every primary tar species in the multistep kinetic scheme cracks under high temperature. The integrated pyrolysis model is evaluated against a pyrolysis experiment of a centimeter-sized beech wood particle at 800 to 1050 \ub0C. The simulation results show a remarkable improvement in both light gas and tar yields compared with a simplified tar cracking model. Meanwhile, the MD tar cracking model also gives a more reasonable prediction of the species yield history, which avoids the appearance of unrealistically high peak values at the initial stage of pyrolysis. Based on the new results, the different roles of secondary tar cracking inside and outside the particle is studied. Finally, the model is also used to assess the influence of tar residence time and several other factors impacting the pyrolysis

    Probing deep level centers in GaN epilayers with variable-frequency capacitance-voltage characteristics of AuGaN Schottky contacts

    Get PDF
    Under identical preparation conditions, AuGaN Schottky contacts were prepared on two kinds of GaN epilayers with significantly different background electron concentrations and mobility as well as yellow emission intensities. Current-voltage (I-V) and variable-frequency capacitance-voltage (C-V) characteristics show that the Schottky contacts on the GaN epilayer with a higher background carrier concentration and strong yellow emission exhibit anomalous reverse-bias I-V and C-V characteristics. This is attributed to the presence of deep level centers. Theoretical simulation of the low-frequency C-V curves leads to a determination of the density and energy level position of the deep centers. © 2006 American Institute of Physics.published_or_final_versio

    Probing deep level centers in GaN epilayers with variable-frequency capacitance-voltage characteristics of Au/GaN Schottky contacts

    Get PDF
    Author name used in this publication: X. M. Tao2006-2007 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Subpixel-Scale Topography Retrieval of Mars Using Single-Image DTM Estimation and Super-Resolution Restoration

    Get PDF
    We propose using coupled deep learning based super-resolution restoration (SRR) and single-image digital terrain model (DTM) estimation (SDE) methods to produce subpixel-scale topography from single-view ESA Trace Gas Orbiter Colour and Stereo Surface Imaging System (CaSSIS) and NASA Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (HiRISE) images. We present qualitative and quantitative assessments of the resultant 2 m/pixel CaSSIS SRR DTM mosaic over the ESA and Roscosmos Rosalind Franklin ExoMars rover’s (RFEXM22) planned landing site at Oxia Planum. Quantitative evaluation shows SRR improves the effective resolution of the resultant CaSSIS DTM by a factor of 4 or more, while achieving a fairly good height accuracy measured by root mean squared error (1.876 m) and structural similarity (0.607), compared to the ultra-high-resolution HiRISE SRR DTMs at 12.5 cm/pixel. We make available, along with this paper, the resultant CaSSIS SRR image and SRR DTM mosaics, as well as HiRISE full-strip SRR images and SRR DTMs, to support landing site characterisation and future rover engineering for the RFEXM22

    Influence of indium-tin-oxide thin-film quality on reverse leakage current of indium-tin-oxide/n-GaN Schottky contacts

    Get PDF
    Author name used in this publication: X. M. Tao2006-2007 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Near-Infrared Super Resolution Imaging with Metallic Nanoshell Particle Chain Array

    Full text link
    We propose a near-infrared super resolution imaging system without a lens or a mirror but with an array of metallic nanoshell particle chain. The imaging array can plasmonically transfer the near-field components of dipole sources in the incoherent and coherent manners and the super resolution images can be reconstructed in the output plane. By tunning the parameters of the metallic nanoshell particle, the plasmon resonance band of the isolate nanoshell particle red-shifts to the near-infrared region. The near-infrared super resolution images are obtained subsequently. We calculate the field intensity distribution at the different planes of imaging process using the finite element method and find that the array has super resolution imaging capability at near-infrared wavelengths. We also show that the image formation highly depends on the coherence of the dipole sources and the image-array distance.Comment: 15 pages, 6 figure
    corecore