28 research outputs found

    Interleukin-17 regulation: an attractive therapeutic approach for asthma

    Get PDF
    Interleukin (IL)-17 is recognized to play a critical role in numerous immune and inflammatory responses by regulating the expression of various inflammatory mediators, which include cytokines, chemokines, and adhesion molecules. There is growing evidence that IL-17 is involved in the pathogenesis of asthma. IL-17 orchestrates the neutrophilic influx into the airways and also enhances T-helper 2 (Th2) cell-mediated eosinophilic airway inflammation in asthma. Recent studies have demonstrated that not only inhibitor of IL-17 per se but also diverse regulators of IL-17 expression reduce antigen-induced airway inflammation, bronchial hyperresponsiveness, and Th2 cytokine levels in animal models of asthma. This review will summarize the role of IL-17 in the context of allergic airway inflammation and discuss the therapeutic potential of various strategies targeting IL-17 for asthma

    Phytohaemagglutinin activation of T cells through the sheep red blood cell receptor.

    No full text
    Expression of receptors for sheep red blood cells and the ability to proliferate in response to phytohaemagglutinin (PHA) are the traditional properties of human T cells, but the function of the sheep red cell receptor (the T11 antigen) is controversial and the mechanism of PHA-induced mitogenesis unclear. Mitogenesis involves a complex series of cell-mediated and factor-dependent interactions, but a rise in intracellular free calcium concentration, [Ca2+]i, seems to be an important primary event in T-cell activation. We have now investigated the effects of three monoclonal antibodies, previously shown to inhibit mitogen-induced proliferation, on T-cell [Ca2+]i. We find that anti-LFA-2 and OKT11, which react with the sheep red cell receptor, have no effect on [Ca2+]i, nor do they inhibit the rise in [Ca2+]i induced by concanavalin A (Con A) or the mitogenic anti-T3 monoclonal antibody UCHT1 (ref. 11). They do, however, block PHA-induced Ca2+ mobilization. Anti-LFA-1, which reacts with the lymphocyte function-associated antigen, has no effect on intracellular Ca2+. These studies suggest that the sheep red blood cell receptor is an activation pathway for T cells and that the effects of PHA are mediated through this pathway
    corecore