10,783 research outputs found

    Thermal treatment of superconductor thin film of the BSCCO system using domestic microwave oven

    Full text link
    In this work, we report the preparation of a superconductor thin film of the BSCCO system using a good quality powder with nominal composition Bi_{1.8}Pb_{0.4}Sr_2CaCu_2O_x which was thermally treated using a domestic microwave oven (2.45 GHz, 800 W). This film was grew on a single crystal of LaAlO_3(100) substrate and exhibited a crystalline structure with the c-axis perpendicular to the plane of the substrate. An onset superconducting transition temperature was measured at 80 K.Comment: 4 pages, 5 figure

    Mantle structure beneath the Macaronesian volcanic islands (Cape Verde, Canaries, Madeira and Azores): A review and future directions

    Get PDF
    Ocean island volcanism provides a unique window into the nature of mantle composition, dynamics and evolution. The four Macaronesian archipelagos–Cape Verde, the Canaries, Madeira and the Azores–are the main magmatic systems of the Central-East Atlantic Ocean with volcanic activity that in some islands poses significant risk for the population. The recent development of regional seismic networks in these settings has provided an important step forward in mapping the underlying mantle. However, difficulties in resolving the small-scale structure with geophysical techniques persist leading to discrepancies in the interpretation of the mechanisms responsible for volcanism. Here we review results from a number of studies on the seismic mantle structure beneath the Macaronesian archipelagos including seismic tomography, receiver functions, precursors and shear-wave splitting. Several regional models show low-velocity features in the asthenosphere below the islands, a relatively thinned transition zone and complex anisotropic patterns and attribute the volcanism to mantle plumes. This inference is supported by whole-mantle tomography models, which find broad low-velocity anomalies in the lower mantle below the Central-East Atlantic. Other models call for alternative mechanisms associated with shallower mantle upwellings and purely plate tectonism. Thus, there is still no generally accepted mechanism that explains volcanism in the Macaronesia region. Future research requires improvements in the resolving power of seismic techniques to better illuminate the velocity structure at a much higher resolution than the currently achieved and ultimately define the mechanisms controlling the ocean island volcanism

    Rural-urban migration in d-dimensional lattices

    Full text link
    The rural-urban migration phenomenon is analyzed by using an agent-based computational model. Agents are placed on lattices which dimensions varying from d=2 up to d=7. The localization of the agents in the lattice define their social neighborhood (rural or urban) not being related to their spatial distribution. The effect of the dimension of lattice is studied by analyzing the variation of the main parameters that characterizes the migratory process. The dynamics displays strong effects even for around one million of sites, in higher dimensions (d=6, 7).Comment: 9 pages, 7 figures, to be published in International Journal of Modern Physics C 1

    Estudo dos solos do município de Pelotas.

    Get PDF
    bitstream/item/41392/1/Pelotas.pdf; bitstream/item/41393/1/mapa-geomorfologia.pdf; bitstream/item/41394/1/mapa-solos.pdf; bitstream/item/41395/1/mapa-uso-das-terras.pd

    Mechanism of Reconnection on Kinetic Scales Based on Magnetospheric Multiscale Mission Observations

    Get PDF
    We examine the role that ions and electrons play in reconnection using observations from the Magnetospheric Multiscale (MMS) mission on kinetic ion and electron scales, which are much shorter than magnetohydrodynamic scales. This study reports observations with unprecedented high resolution that MMS provides for magnetic eld (7.8 ms) and plasma (30 ms for electrons and 150 ms for ions). We analyze and compare approaches to the magnetopause in 2016 November, to the electron diffusion region in the magnetotail in 2017 July followed by a current sheet crossing in 2018 July. Besides magnetic eld reversals, changes in the direction of the ow velocity, and ion and electron heating, MMS observed large uctuations in the electron ow speeds in the magnetotail. As expected from numerical simulations, we have veried that when the eld lines and plasma become decoupled a large reconnecting electric eld related to the Hall current (110 mV/m) is responsible for fast reconnection in the ion diffusion region. Although inertial accelerating forces remain moderate (12 mV/m), the electric elds resulting from the divergence of the full electron pressure tensor provide the main contribution to the generalized Ohms law at the neutral sheet (as large as 200 mV/m). In our view, this illustrates that when ions decouple electron physics dominates. The results obtained on kinetic scales may be useful for better understanding the physical mechanisms governing reconnection processes in various magnetized laboratory and space plasmas
    corecore