40 research outputs found

    HPV genotypes in the oral cavity/oropharynx of children and adolescents: cross-sectional survey in Poland

    Get PDF
    Human papillomaviruses (HPVs) are a very complex group of pathogenic viruses, with more than 80 types, causing human infection. Given the prevalence of HPV infection and its relationship with the development of cervical and many other cancers, HPV vaccine development has been a major public health initiative worldwide in the last decade. The aim of the presented study was to identify HPV DNA by MY-PCR in 4,150 school children and adolescents, aged 10–18 years in the Wielkopolska region, Poland. All individuals were asked to fill in extensive questionnaires; further normal, oral squamous cells were collected from each pupil. Cellular DNA was isolated and used as a MY-PCR template to estimate the incidence of HPV-active infection. Forty five subjects (1.08% of the sample) were carriers of oropharyngeal HPVs. HPV status and variables of interest, such as age, gender, socioeconomical status, and risk factors (smoking and sexual intercourse history, alcohol consumption) were not correlated. The presence of HPVs in the oral cavity was cumulated in several schools of the region. DNA sequencing of MY-PCR products revealed only four HPV genotypes. The most frequent genotype was HPV11 (38/45 HPV-positive cases), while other more rare genotypes were HPV6 (3/45), HPV12 (3/45), and HPV57 (1/45). Conclusion: Our findings presented herein, reveal a relatively low prevalance of oropharyngeal HPVs in Polish adolescents and fill an important gap in the knowledge of oral HPV infections of children above 10 years and adolescents

    Inhibition of the Soluble Epoxide Hydrolase Promotes Albuminuria in Mice with Progressive Renal Disease

    Get PDF
    Epoxyeicotrienoic acids (EETs) are cytochrome P450-dependent anti-hypertensive and anti-inflammatory derivatives of arachidonic acid, which are highly abundant in the kidney and considered reno-protective. EETs are degraded by the enzyme soluble epoxide hydrolase (sEH) and sEH inhibitors are considered treatment for chronic renal failure (CRF). We determined whether sEH inhibition attenuates the progression of CRF in the 5/6-nephrectomy model (5/6-Nx) in mice. 5/6-Nx mice were treated with a placebo, an ACE-inhibitor (Ramipril, 40 mg/kg), the sEH-inhibitor cAUCB or the CYP-inhibitor fenbendazole for 8 weeks. 5/6-Nx induced hypertension, albuminuria, glomerulosclerosis and tubulo-interstitial damage and these effects were attenuated by Ramipril. In contrast, cAUCB failed to lower the blood pressure and albuminuria was more severe as compared to placebo. Plasma EET-levels were doubled in 5/6 Nx-mice as compared to sham mice receiving placebo. Renal sEH expression was attenuated in 5/6-Nx mice but cAUCB in these animals still further increased the EET-level. cAUCB also increased 5-HETE and 15-HETE, which derive from peroxidation or lipoxygenases. Similar to cAUCB, CYP450 inhibition increased HETEs and promoted albuminuria. Thus, sEH-inhibition failed to elicit protective effects in the 5/6-Nx model and showed a tendency to aggravate the disease. These effects might be consequence of a shift of arachidonic acid metabolism into the lipoxygenase pathway

    Involvement of SIK3 in Glucose and Lipid Homeostasis in Mice

    Get PDF
    Salt-inducible kinase 3 (SIK3), an AMP-activated protein kinase-related kinase, is induced in the murine liver after the consumption of a diet rich in fat, sucrose, and cholesterol. To examine whether SIK3 can modulate glucose and lipid metabolism in the liver, we analyzed phenotypes of SIK3-deficent mice. Sik3−/− mice have a malnourished the phenotype (i.e., lipodystrophy, hypolipidemia, hypoglycemia, and hyper-insulin sensitivity) accompanied by cholestasis and cholelithiasis. The hypoglycemic and hyper-insulin-sensitive phenotypes may be due to reduced energy storage, which is represented by the low expression levels of mRNA for components of the fatty acid synthesis pathways in the liver. The biliary disorders in Sik3−/− mice are associated with the dysregulation of gene expression programs that respond to nutritional stresses and are probably regulated by nuclear receptors. Retinoic acid plays a role in cholesterol and bile acid homeostasis, wheras ALDH1a which produces retinoic acid, is expressed at low levels in Sik3−/− mice. Lipid metabolism disorders in Sik3−/− mice are ameliorated by the treatment with 9-cis-retinoic acid. In conclusion, SIK3 is a novel energy regulator that modulates cholesterol and bile acid metabolism by coupling with retinoid metabolism, and may alter the size of energy storage in mice

    New insight into inter-organ crosstalk contributing to the pathogenesis of non-alcoholic fatty liver disease (NAFLD)

    Get PDF
    corecore