3,334 research outputs found

    Seismic response to evolving injection at the Rotokawa geothermal field, New Zealand

    Get PDF
    Catalogs of microseismicity are routinely compiled at geothermal reservoirs and provide valuable insights into reservoir structure and fluid movement. Hypocentral locations are typically used to infer the orientations of structures and constrain the extent of the permeable reservoir. However, frequency-magnitude distributions may contain additional, and underused, information about the distribution of pressure. Here, we present a four-year catalog of seismicity for the Rotokawa geothermal field in the central Taupō Volcanic Zone, New Zealand starting two years after the commissioning of the 140 MWe Nga Awa Purua power station. Using waveform-correlation-based signal detection we double the size of the previous earthquake catalog, refine the location and orientation of two reservoir faults and identify a new structure. We find the rate of seismicity to be insensitive to major changes in injection strategy during the study period, including the injectivity decline and shift of injection away from the dominant injector, RK24. We also map the spatial distribution of the earthquake frequency-magnitude distribution, or b-value, and show that it increases from ∼1.0 to ∼1.5 with increasing depth below the reservoir. As has been proposed at other reservoirs, we infer that these spatial variations reflect the distribution of pressure in the reservoir, where areas of high b-value correspond to areas of high pore-fluid pressure and a broad distribution of activated fractures. This analysis is not routinely conducted by geothermal operators but shows promise for using earthquake b-value as an additional tool for reservoir monitoring and management

    Quantum control of spin-correlations in ultracold lattice gases

    Full text link
    We demonstrate that it is possible to prepare a lattice gas of ultracold atoms with a desired non-classical spin-correlation function using atom-light interaction of the kind routinely employed in quantum spin polarization spectroscopy. Our method is based on quantum non-demolition (QND) measurement and feedback, and allows in particular to create on demand exponentially or algebraically decaying correlations, as well as a certain degree of multi-partite entanglement.Comment: 2 figure

    Certified quantum non-demolition measurement of material systems

    Full text link
    An extensive debate on quantum non-demolition (QND) measurement, reviewed in Grangier et al. [Nature, {\bf 396}, 537 (1998)], finds that true QND measurements must have both non-classical state-preparation capability and non-classical information-damage tradeoff. Existing figures of merit for these non-classicality criteria require direct measurement of the signal variable and are thus difficult to apply to optically-probed material systems. Here we describe a method to demonstrate both criteria without need for to direct signal measurements. Using a covariance matrix formalism and a general noise model, we compute meter observables for QND measurement triples, which suffice to compute all QND figures of merit. The result will allow certified QND measurement of atomic spin ensembles using existing techniques.Comment: 11 pages, zero figure

    How far does the analogy between causal horizon-induced thermalization with the standard heat bath situation go?

    Full text link
    After a short presentation of KMS states and modular theory as the unifying description of thermalizing systems we propose the absence of transverse vacuum fluctuations in the holographic projections as the mechanism for an area behavior (the transverse area) of localization entropy as opposed to the volume dependence of ordinary heat bath entropy. Thermalization through causal localization is not a property of QM, but results from the omnipresent vacuum polarization in QFT and does not require a Gibbs type ensemble avaraging (coupling to a heat bath).Comment: 10 pages, based on talk given at the 2002 Londrina Winter Schoo

    Manufacturing time operators: covariance, selection criteria, and examples

    Full text link
    We provide the most general forms of covariant and normalized time operators and their probability densities, with applications to quantum clocks, the time of arrival, and Lyapunov quantum operators. Examples are discussed of the profusion of possible operators and their physical meaning. Criteria to define unique, optimal operators for specific cases are given

    Thermal behavior induced by vacuum polarization on causal horizons in comparison with the standard heat bath formalism

    Get PDF
    Modular theory of operator algebras and the associated KMS property are used to obtain a unified description for the thermal aspects of the standard heat bath situation and those caused by quantum vacuum fluctuations from localization. An algebraic variant of lightfront holography reveals that the vacuum polarization on wedge horizons is compressed into the lightray direction. Their absence in the transverse direction is the prerequisite to an area (generalized Bekenstein-) behavior of entropy-like measures which reveal the loss of purity of the vacuum due to restrictions to wedges and their horizons. Besides the well-known fact that localization-induced (generalized Hawking-) temperature is fixed by the geometric aspects, this area behavior (versus the standard volume dependence) constitutes the main difference between localization-caused and standard thermal behavior.Comment: 15 page Latex, dedicated to A. A. Belavin on the occasion of his 60th birthda
    corecore