748 research outputs found

    Charge Order Breaks Magnetic Symmetry in Molecular Quantum Spin Chains

    Full text link
    Charge order affects most of the electronic properties but is believed not to alter the spin arrangement since the magnetic susceptibility remains unchanged. We present electron-spin-resonance experiments on quasi-one-dimensional (TMTTF)2X salts (X= PF6, AsF6 and SbF6), which reveal that the magnetic properties are modified below TCO when electronic ferroelectricity sets in. The coupling of anions and organic molecules rotates the g-tensor out of the molecular plane creating magnetically non-equivalent sites on neighboring chains at domain walls. Due to anisotropic Zeeman interaction a novel magnetic interaction mechanism in the charge-ordered state is observed as a doubling of the rotational periodicity of Delta H.Comment: 9 pages, 13 figure

    Prediction of COVID-19 Hospital Length of Stay and Risk of Death Using Artificial Intelligence-Based Modeling

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly infectious virus with overwhelming demand on healthcare systems, which require advanced predictive analytics to strategize COVID-19 management in a more effective and efficient manner. We analyzed clinical data of 2017 COVID-19 cases reported in the Dubai health authority and developed predictive models to predict the patient's length of hospital stay and risk of death. A decision tree (DT) model to predict COVID-19 length of stay was developed based on patient clinical information. The model showed very good performance with a coefficient of determination R2 of 49.8% and a median absolute deviation of 2.85 days. Furthermore, another DT-based model was constructed to predict COVID-19 risk of death. The model showed excellent performance with sensitivity and specificity of 96.5 and 87.8%, respectively, and overall prediction accuracy of 96%. Further validation using unsupervised learning methods showed similar separation patterns, and a receiver operator characteristic approach suggested stable and robust DT model performance. The results show that a high risk of death of 78.2% is indicated for intubated COVID-19 patients who have not used anticoagulant medications. Fortunately, intubated patients who are using anticoagulant and dexamethasone medications with an international normalized ratio of <1.69 have zero risk of death from COVID-19. In conclusion, we constructed artificial intelligence–based models to accurately predict the length of hospital stay and risk of death in COVID-19 cases. These smart models will arm physicians on the front line to enhance management strategies to save lives

    Insertion Detection System Employing Neural Network MLP and Detection Trees Using Different Techniques

    Get PDF
    by addressing intruder attacks, network security experts work to maintain services available at all times. The Intrusion Detection System (IDS) is one of the available mechanisms for detecting and classifying any abnormal behavior. As a result, the IDS must always be up to date with the most recent intruder attack signatures to maintain the confidentiality, integrity, and availability of the services. This paper shows how the NSL-KDD dataset may be used to test and evaluate various Machine Learning techniques. It focuses mostly on the NLS-KDD pre-processing step to create an acceptable and balanced experimental data set to improve accuracy and minimize false positives. For this study, the approaches J48 and MLP were employed. The Decision Trees classifier has been demonstrated to have the highest accuracy rate for detecting and categorizing all NSL-KDD dataset attacks

    Domain walls at the spin density wave endpoint of the organic superconductor (TMTSF)2PF6 under pressure

    Full text link
    We report the first comprehensive investigation of the organic superconductor (TMTSF)2PF6 in the vicinity of the endpoint of the spin density wave - metal phase transition where phase coexistence occurs. At low temperature, the transition of metallic domains towards superconductivity is used to reveal the various textures. In particular, we demonstrate experimentally the existence of 1D and 2D metallic domains with a cross-over from a filamentary superconductivity mostly along the c?-axis to a 2D superconductivity in the b?c-plane perpendicular to the most conducting direction. The formation of these domain walls may be related to the proposal of a soliton phase in the vicinity of the critical pressure of the (TMTSF)2PF6 phase diagram.Comment: 5 page

    Recent and future trends in synthetic greenhouse gas radiative forcing

    Get PDF
    Atmospheric measurements show that emissions of hydrofluorocarbons (HFCs) and hydrochlorofluorocarbons are now the primary drivers of the positive growth in synthetic greenhouse gas (SGHG) radiative forcing. We infer recent SGHG emissions and examine the impact of future emissions scenarios, with a particular focus on proposals to reduce HFC use under the Montreal Protocol. If these proposals are implemented, overall SGHG radiative forcing could peak at around 355 mW m[superscript −2] in 2020, before declining by approximately 26% by 2050, despite continued growth of fully fluorinated greenhouse gas emissions. Compared to “no HFC policy” projections, this amounts to a reduction in radiative forcing of between 50 and 240 mW m[superscript −2] by 2050 or a cumulative emissions saving equivalent to 0.5 to 2.8 years of CO2 emissions at current levels. However, more complete reporting of global HFC emissions is required, as less than half of global emissions are currently accounted for.Natural Environment Research Council (Great Britain) (Advanced Research Fellowship NE/I021365/1)United States. National Aeronautics and Space Administration (Upper Atmospheric Research Program Grant NNX11AF17G)United States. National Oceanic and Atmospheric Administratio

    Upper critical field divergence induced by mesoscopic phase separation in the organic superconductor (TMTSF)2ReO4

    Full text link
    Due to the competition of two anion orders, (TMTSF)2ReO4, presents a phase coexistence between semiconducting and metallic (superconducting) regions (filaments or droplets) in a wide range of pressure. In this regime, the superconducting upper critical field for H parallel to both c* and b' axes present a linear part at low fields followed by a divergence above a cross-over field. This cross-over corresponds to the 3D-2D decoupling transition expected in filamentary or granular superconductors. The sharpness of the transition also demonstrates that all filaments are of similar sizes and self organize in a very ordered way. The distance between the filaments and their cross-section are estimated.Comment: 4 pages, 4 figure

    Characterization of uncertainties in atmospheric trace gas inversions using hierarchical Bayesian methods

    Get PDF
    We present a hierarchical Bayesian method for atmospheric trace gas inversions. This method is used to estimate emissions of trace gases as well as "hyper-parameters" that characterize the probability density functions (PDFs) of the a priori emissions and model-measurement covariances. By exploring the space of "uncertainties in uncertainties", we show that the hierarchical method results in a more complete estimation of emissions and their uncertainties than traditional Bayesian inversions, which rely heavily on expert judgment. We present an analysis that shows the effect of including hyper-parameters, which are themselves informed by the data, and show that this method can serve to reduce the effect of errors in assumptions made about the a priori emissions and model-measurement uncertainties. We then apply this method to the estimation of sulfur hexafluoride (SF6) emissions over 2012 for the regions surrounding four Advanced Global Atmospheric Gases Experiment (AGAGE) stations. We find that improper accounting of model representation uncertainties, in particular, can lead to the derivation of emissions and associated uncertainties that are unrealistic and show that those derived using the hierarchical method are likely to be more representative of the true uncertainties in the system. We demonstrate through this SF6 case study that this method is less sensitive to outliers in the data and to subjective assumptions about a priori emissions and model-measurement uncertainties than traditional methods

    Confounding patient factors affecting the proper interpretation of the periostin level as a biomarker in asthma development

    Get PDF
    Introduction: The proper use of serum periostin (POSTN) as a biomarker for asthma is hindered by inconsistent performance in different clinical settings. Objective: To explore patient’s factors that may affect POSTN expression locally and systematically and its utility as a biomarker for asthma development. Materials and Methods: Here we used bioinformatics analysis of publicly available transcriptomics data to confirm that POSTN is an asthma specific gene involved in core signaling pathways enriched in the bronchial epithelium during asthma. We then explored a large number of datasets to identify possible confounders that may affect the POSTN gene expression and consequently, its interpretation as a reliable biomarker for asthma. Plasma and saliva levels of POSTN were determined in locally recruited asthmatic patients (mild, moderate and severe) compared to healthy controls to confirm the bioinformatics findings. Results: Our bioinformatics results confirmed that POSTN was consistently upregulated in the bronchial epithelium in asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) bronchial epithelium. In asthma, its mRNA expression was affected by gender, sample anatomical site and type, steroid therapy, and smoking. In our cohort, plasma POSTN was upregulated in severe and non-severe asthmatic patients. Saliva POSTN was significantly higher in non-severe asthmatic patients compared to healthy and severe asthmatic patients (specifically those who are not on Xolair (omalizumab)). Patients’ BMI, inhaled steroid use and Xolair treatment affected POSTN plasma levels. Conclusion: Up to our knowledge, this is the first study examining the level of POSTN in the saliva of asthmatic patients. Both plasma and saliva POSTN levels can aid in early diagnosis of asthma. Saliva POSTN level was more sensitive than plasma POSTN in differentiating between severe and non-severe asthmatics. Patients’ characteristics like BMI, the use of inhaled steroids, or Xolair treatment should be carefully reviewed before any meaningful interpretation of POSTN level in clinical practice
    corecore