6 research outputs found
Quantum Neuronal Sensing of Quantum Many-Body States on a 61-Qubit Programmable Superconducting Processor
Classifying many-body quantum states with distinct properties and phases of
matter is one of the most fundamental tasks in quantum many-body physics.
However, due to the exponential complexity that emerges from the enormous
numbers of interacting particles, classifying large-scale quantum states has
been extremely challenging for classical approaches. Here, we propose a new
approach called quantum neuronal sensing. Utilizing a 61 qubit superconducting
quantum processor, we show that our scheme can efficiently classify two
different types of many-body phenomena: namely the ergodic and localized phases
of matter. Our quantum neuronal sensing process allows us to extract the
necessary information coming from the statistical characteristics of the
eigenspectrum to distinguish these phases of matter by measuring only one
qubit. Our work demonstrates the feasibility and scalability of quantum
neuronal sensing for near-term quantum processors and opens new avenues for
exploring quantum many-body phenomena in larger-scale systems.Comment: 7 pages, 3 figures in the main text, and 13 pages, 13 figures, and 1
table in supplementary material
Time crystal embodies chimeralike state in periodically driven quantum spin system
Chimera states are a captivating occurrence in which a system composed of multiple interconnected elements exhibits a distinctive combination of synchronized and desynchronized behavior. The emergence of these states can be attributed to the complex interdependence between quantum entanglement and the delicate balance of interactions among system constituents. The emergence of discrete-time crystal (DTC) in typical many-body periodically driven systems occurs when there is a breaking of time translation symmetry. Coexisting coupled DTC and a ferromagnetic dynamically many-body localized (DMBL) phase at distinct regions have been investigated under the controlled spin rotational error of a disorder-free spin-1/2 chain for different types of spin-spin interactions. We contribute a novel approach for the emergence of the DTC-DMBL-chimeralike state, which is robust against external static fields in a periodically driven quantum many-body system