15 research outputs found

    Properties of global monopoles with an event horizon

    Get PDF
    We investigate the properties of global monopoles with an event horizon. We find that there is an unstable circular orbit even if a particle does not have an angular momentum when the core mass is negative. We also obtain the asymptotic form of solutions when the event horizon is much larger than the core radius of the monopole, and discuss if they could be a model of galactic halos.Comment: 5 pages, 7 figure

    The Singularity Threshold of the Nonlinear Sigma Model Using 3D Adaptive Mesh Refinement

    Get PDF
    Numerical solutions to the nonlinear sigma model (NLSM), a wave map from 3+1 Minkowski space to S^3, are computed in three spatial dimensions (3D) using adaptive mesh refinement (AMR). For initial data with compact support the model is known to have two regimes, one in which regular initial data forms a singularity and another in which the energy is dispersed to infinity. The transition between these regimes has been shown in spherical symmetry to demonstrate threshold behavior similar to that between black hole formation and dispersal in gravitating theories. Here, I generalize the result by removing the assumption of spherical symmetry. The evolutions suggest that the spherically symmetric critical solution remains an intermediate attractor separating the two end states.Comment: 5 pages, 5 figures, 1 table; To be published in Phys. Rev. D.; Added discussion of initial data; Added figure and reference

    Static Gravitational Global Monopoles

    Get PDF
    Static solutions in spherical symmetry are found for gravitating global monopoles. Regular solutions lacking a horizon are found for η<1/8π\eta < 1/\sqrt{8\pi}, where η\eta is the scale of symmetry breaking. Apparently regular solutions with a horizon are found for 1/\sqrt{8\pi} \le \eta \alt \sqrt{3/8\pi}. Though they have a horizon, they are not Schwarzschild. The solution for η=1/8π\eta = 1/\sqrt{8\pi} is argued to have a horizon at infinity. The failure to find static solutions for η>3/8π≈0.3455\eta > \sqrt{3/8\pi} \approx 0.3455 is consistent with findings that topological inflation begins at η≈0.33\eta \approx 0.33.Comment: 4 pages, 6 figure

    Critical Collapse of the Massless Scalar Field in Axisymmetry

    Get PDF
    We present results from a numerical study of critical gravitational collapse of axisymmetric distributions of massless scalar field energy. We find threshold behavior that can be described by the spherically symmetric critical solution with axisymmetric perturbations. However, we see indications of a growing, non-spherical mode about the spherically symmetric critical solution. The effect of this instability is that the small asymmetry present in what would otherwise be a spherically symmetric self-similar solution grows. This growth continues until a bifurcation occurs and two distinct regions form on the axis, each resembling the spherically symmetric self-similar solution. The existence of a non-spherical unstable mode is in conflict with previous perturbative results, and we therefore discuss whether such a mode exists in the continuum limit, or whether we are instead seeing a marginally stable mode that is rendered unstable by numerical approximation.Comment: 11 pages, 8 figure

    Adaptive Mesh Refinement for Characteristic Grids

    Full text link
    I consider techniques for Berger-Oliger adaptive mesh refinement (AMR) when numerically solving partial differential equations with wave-like solutions, using characteristic (double-null) grids. Such AMR algorithms are naturally recursive, and the best-known past Berger-Oliger characteristic AMR algorithm, that of Pretorius & Lehner (J. Comp. Phys. 198 (2004), 10), recurses on individual "diamond" characteristic grid cells. This leads to the use of fine-grained memory management, with individual grid cells kept in 2-dimensional linked lists at each refinement level. This complicates the implementation and adds overhead in both space and time. Here I describe a Berger-Oliger characteristic AMR algorithm which instead recurses on null \emph{slices}. This algorithm is very similar to the usual Cauchy Berger-Oliger algorithm, and uses relatively coarse-grained memory management, allowing entire null slices to be stored in contiguous arrays in memory. The algorithm is very efficient in both space and time. I describe discretizations yielding both 2nd and 4th order global accuracy. My code implementing the algorithm described here is included in the electronic supplementary materials accompanying this paper, and is freely available to other researchers under the terms of the GNU general public license.Comment: 37 pages, 15 figures (40 eps figure files, 8 of them color; all are viewable ok in black-and-white), 1 mpeg movie, uses Springer-Verlag svjour3 document class, includes C++ source code. Changes from v1: revised in response to referee comments: many references added, new figure added to better explain the algorithm, other small changes, C++ code updated to latest versio

    Polar Perturbations of Self-gravitating Supermassive Global Monopoles

    Full text link
    Spontaneous global symmetry breaking of O(3) scalar field gives rise to point-like topological defects, global monopoles. By taking into account self-gravity,the qualitative feature of the global monopole solutions depends on the vacuum expectation value v of the scalar field. When v < sqrt{1 / 8 pi}, there are global monopole solutions which have a deficit solid angle defined at infinity. When sqrt{1 / 8 pi} <= v < sqrt{3 / 8 pi}, there are global monopole solutions with the cosmological horizon, which we call the supermassive global monopole. When v >= sqrt{3 / 8 pi}, there is no nontrivial solution. It was shown that all of these solutions are stable against the spherical perturbations. In addition to the global monopole solutions, the de Sitter solutions exist for any value of v. They are stable against the spherical perturbations when v sqrt{3 / 8 pi}. We study polar perturbations of these solutions and find that all self-gravitating global monopoles are stable even against polar perturbations, independently of the existence of the cosmological horizon, while the de Sitter solutions are always unstable.Comment: 10 pages, 6 figures, corrected some type mistakes (already corrected in PRD version

    A new transition between discrete and continuous self-similarity in critical gravitational collapse

    Get PDF
    We analyze a bifurcation phenomenon associated with critical gravitational collapse in a family of self-gravitating SU(2) ? models. As the dimensionless coupling constant decreases, the critical solution changes from discretely self-similar (DSS) to continuously self-similar (CSS). Numerical results provide evidence for a bifurcation which is analogous to a heteroclinic loop bifurcation in dynamical systems, where two fixed points (CSS) collide with a limit cycle (DSS) in phase space as the coupling constant tends to a critical value

    Too big to fail and too big to succeed: accounting and privatisation in the Prison Service of England and Wales

    Get PDF
    This paper is concerned with the challenges involved in the transformation of the prison into a performance-oriented accounting entity. It examines the implication of private sector accounting and consulting expertise in redefining prison values and prison performance, and it discusses the consequences this had for definitions of risk and responsibility. The paper shows how the reforms promoted a systemic decentring of Prison Service accountability. Prison managers and regulators came to be inserted into hierarchies of expertise and credibility shaped by quests for commensuration and auditability. Further, the paper shows how the reform attempts brought about a situation of institutional lock-in by contributing, as the outgoing HM Chief Inspector of Prisons Anne Owers has put it in 2010, to the creation of an inflated prison system ‘too big to fail, and too big to succeed'

    The Interactive Effects of Request Form and Speaker Status on Judgments of Requests

    No full text
    The interactive effects of request form and speaker status on judgments of requests were investigated in a laboratory study of metapragmatics. College students (N=132) read scenarios in which speakers made requests of them. Speakers were higher in status, peers, or lower in status than the subjects, and the requests were imperatives with semantic aggravators, embedded imperatives, or permission directives with semantic softeners. Subjects rated the speakers with respect to how rude/polite, humble/arrogant, and powerful/weak they were being. Significant interactions were obtained for the first two ratings, indicating that the speaker status effect was stronger with permission directives than with the other requests. These findings suggest that listeners view unexpectedly indirect requests as more impolite and sarcastic than requests used in other situations and, more generally, that language meaning is a function of both form and context
    corecore