49 research outputs found

    A Hybrid Symbolic-Statistical Approach to Modeling Metabolic Networks

    Full text link

    The Apriori Stochastic Dependency Detection (ASDD) algorithm for learning Stochastic logic rules

    Get PDF
    Apriori Stochastic Dependency Detection (ASDD) is an algorithm for fast induction of stochastic logic rules from a database of observations made by an agent situated in an environment. ASDD is based on features of the Apriori algorithm for mining association rules in large databases of sales transactions [1] and the MSDD algorithm for discovering stochastic dependencies in multiple streams of data [15]. Once these rules have been acquired the Precedence algorithm assigns operator precedence when two or more rules matching the input data are applicable to the same output variable. These algorithms currently learn propositional rules, with future extensions aimed towards learning first-order models. We show that stochastic rules produced by this algorithm are capable of reproducing an accurate world model in a simple predator-prey environment

    Are grammatical representations useful for learning from biological sequence data?— a case study

    Get PDF
    This paper investigates whether Chomsky-like grammar representations are useful for learning cost-effective, comprehensible predictors of members of biological sequence families. The Inductive Logic Programming (ILP) Bayesian approach to learning from positive examples is used to generate a grammar for recognising a class of proteins known as human neuropeptide precursors (NPPs). Collectively, five of the co-authors of this paper, have extensive expertise on NPPs and general bioinformatics methods. Their motivation for generating a NPP grammar was that none of the existing bioinformatics methods could provide sufficient cost-savings during the search for new NPPs. Prior to this project experienced specialists at SmithKline Beecham had tried for many months to hand-code such a grammar but without success. Our best predictor makes the search for novel NPPs more than 100 times more efficient than randomly selecting proteins for synthesis and testing them for biological activity. As far as these authors are aware, this is both the first biological grammar learnt using ILP and the first real-world scientific application of the ILP Bayesian approach to learning from positive examples. A group of features is derived from this grammar. Other groups of features of NPPs are derived using other learning strategies. Amalgams of these groups are formed. A recognition model is generated for each amalgam using C4.5 and C4.5rules and its performance is measured using both predictive accuracy and a new cost function, Relative Advantage (RA). The highest RA was achieved by a model which includes grammar-derived features. This RA is significantly higher than the best RA achieved without the use of the grammar-derived features. Predictive accuracy is not a good measure of performance for this domain because it does not discriminate well between NPP recognition models: despite covering varying numbers of (the rare) positives, all the models are awarded a similar (high) score by predictive accuracy because they all exclude most of the abundant negatives

    From Social Data Mining to Forecasting Socio-Economic Crisis

    Full text link
    Socio-economic data mining has a great potential in terms of gaining a better understanding of problems that our economy and society are facing, such as financial instability, shortages of resources, or conflicts. Without large-scale data mining, progress in these areas seems hard or impossible. Therefore, a suitable, distributed data mining infrastructure and research centers should be built in Europe. It also appears appropriate to build a network of Crisis Observatories. They can be imagined as laboratories devoted to the gathering and processing of enormous volumes of data on both natural systems such as the Earth and its ecosystem, as well as on human techno-socio-economic systems, so as to gain early warnings of impending events. Reality mining provides the chance to adapt more quickly and more accurately to changing situations. Further opportunities arise by individually customized services, which however should be provided in a privacy-respecting way. This requires the development of novel ICT (such as a self- organizing Web), but most likely new legal regulations and suitable institutions as well. As long as such regulations are lacking on a world-wide scale, it is in the public interest that scientists explore what can be done with the huge data available. Big data do have the potential to change or even threaten democratic societies. The same applies to sudden and large-scale failures of ICT systems. Therefore, dealing with data must be done with a large degree of responsibility and care. Self-interests of individuals, companies or institutions have limits, where the public interest is affected, and public interest is not a sufficient justification to violate human rights of individuals. Privacy is a high good, as confidentiality is, and damaging it would have serious side effects for society.Comment: 65 pages, 1 figure, Visioneer White Paper, see http://www.visioneer.ethz.c

    The Biochemical Abstract Machine {BIOCHAM}

    Get PDF
    http://www.springerlink.com/index/NVWWRAN9W4RUA03NIn this article we present the Biochemical Abstract Machine BIOCHAM and advocate its use as a formal modeling environment for networks biology. Biocham provides a precise semantics to biomolecular interaction maps. Based on this formal semantics, the Biocham system offers automated reasoning to ols for querying the temporal properties of the system under all its possible behavi ors. We present the main features of Biocham, provide details on a simple example of the MAPK signaling cascade and prove some results on the equivalence of model s w.r.t. their temporal properties

    Model Revision from Temporal Logic Properties in Computational Systems Biology

    Get PDF
    International audienceSystems biologists build models of bio-molecular processes from knowledge acquired both at the gene and protein levels, and at the phenotype level through experiments done in wildlife and mutated organisms. In this chapter, we present qualitative and quantitative logic learning tools, and illustrate how they can be useful to the modeler. We focus on biochemical reaction models written in the Systems Biology Markup Language SBML, and interpreted in the Biochemical Abstract Machine BIOCHAM. We first present a model revision algorithm for inferring reaction rules from biological properties expressed in temporal logic. Then we discuss the representations of kinetic models with ordinary differential equations (ODEs) and with stochastic logic programs (SLPs), and describe a parameter search algorithm for finding parameter values satisfying quantitative temporal properties. These methods are illustrated by a simple model of the cell cycle control, and by an application to the modelling of the conditions of synchronization in period of the cell cycle by the circadian cycle
    corecore