1,472 research outputs found

    Compressive sampling of binary images

    Get PDF
    Compressive sampling is a novel framework that exploits sparsity of a signal in a transform domain to perform sampling below the Nyquist rate. In this paper, we apply compressive sampling to reduce the sampling rate of binary images. A system is proposed whereby the image is split into non-overlapping blocks of equal size and compressive sampling is performed on selected blocks only using the orthogonal matching pursuit technique. The remaining blocks are sampled fully. This way, the complexity and the required sampling time is reduced since the orthogonal matching pursuit operates on a smaller number of samples, and at the same time local sparsity within an image is exploited. Our simulation results show more than 20% saving in acquisition for several binary images

    On practical design for joint distributed source and network coding

    Get PDF
    This paper considers the problem of communicating correlated information from multiple source nodes over a network of noiseless channels to multiple destination nodes, where each destination node wants to recover all sources. The problem involves a joint consideration of distributed compression and network information relaying. Although the optimal rate region has been theoretically characterized, it was not clear how to design practical communication schemes with low complexity. This work provides a partial solution to this problem by proposing a low-complexity scheme for the special case with two sources whose correlation is characterized by a binary symmetric channel. Our scheme is based on a careful combination of linear syndrome-based Slepian-Wolf coding and random linear mixing (network coding). It is in general suboptimal; however, its low complexity and robustness to network dynamics make it suitable for practical implementation
    corecore