2 research outputs found

    Self-Assembly of Condensable “Bola-Amphiphiles” in Water/Tetraethoxysilane Mixtures for the Elaboration of Mesostructured Hybrid Materials

    No full text
    The self-assembly of condensable amphiphile molecules in water is an attractive approach for the synthesis of mesostructured hybrid materials. In this article, we focus on aminoundecyltriethoxysilane (AUT), a condensable “bola-amphiphile”, i.e., an amphiphilic molecule possessing two polar heads on both sides of an aliphatic chain. In the present case, one side is a condensable triethoxysilane, and the other side is an amino group. We report on the self-assembly of AUT in mixtures of water and tetraethoxysilane (TEOS). In situ small-angle X-ray scattering (SAXS) measurements allowed us to follow the evolution of the structure from the liquid state up to the solid material formed upon catalytic polycondensation. Depending on the medium composition, hexagonal or lamellar structures can be observed in the final material. These observations allowed us to propose a model for the self-assembly of AUT in water/TEOS mixtures that we were able to validate by simulations of the SAXS profiles. By taking advantage of the modularity of such a system, it proves possible to prepare in a simple way various structured hybrid materials possessing a high number of available organic functions without using sacrificial surfactant molecules

    Synergism by Coassembly at the Origin of Ion Selectivity in Liquid–Liquid Extraction

    No full text
    In liquid–liquid extraction, synergism emerges when for a defined formulation of the solvent phase, there is an increase of distribution coefficients for some cations in a mixture. To characterize the synergistic mechanisms, we determine the free energy of mixed coassembly in aggregates. Aggregation in any point of a phase diagram can be followed not only structurally by SANS, SAXS, and SLS, but also thermodynamically by determining the concentration of monomers coexisting with reverse aggregates. Using the industrially used couple HDEHP/TOPO forming mixed reverse aggregates, and the representative couple U/Fe, we show that there is no peculiarity in the aggregates microstructure at the maximum of synergism. Nevertheless, the free energy of aggregation necessary to form mixed aggregates containing extracted ions in their polar core is comparable to the transfer free energy difference between target and nontarget ions, as deduced from the synergistic selectivity peak
    corecore