10 research outputs found

    Biology, damage potential and molecular identification of Conogethes punctiferalis Guenee in cocoa

    Get PDF
    Conogethes punctiferalis is an important polyphagous pest attacking many economically important crops. Recently, C. punctiferalis has been found to be an emerging pest in cocoa and was found to feed and bore into cocoa pods. The larvae feed on the rind of cocoa cherelles/pods, later bore into pods, feed the internal contents of the pods, the granular faecal pellets are seen outside the pods. When pods/cherelles touch each other, it is easy for the larvae to damage more than one pod/cherelle. Pods damaged by Conogethes are exposed to secondary infection by pathogens that lead to pod rot. The larvae sometimes feed on flower buds and flowers cushions. The damaged flower cushions may dry and shed prematurely. The damage of C. punctiferalis on cocoa is observed from December and peak incidence is noticed during March to May. On an average 2 per cent damage was recorded in the Central Plantation Crops Research Institute, Regional Station, Vittal. In order to develop a DNA-based molecular identification system for this species, primers were designed based on two nuclear genes viz., ribosomal protein S5 (RPS5) gene and carbamoyl phosphate synthetase/ aspartate transcarbamylase/dihydroorotase (CAD). PCR-amenable DNA was isolated from C. puntiferalis larva. The designed primers amplified single bands of expected sizes using genomic DNA as template. The amplicons were purified, cloned and sequenced and sequence analysis revealed close homology to the gene of interest from related moths

    Not Available

    No full text
    Not AvailableConogethes punctiferalis is an important polyphagous pest attacking many economically important crops. Recently, C. punctiferalis has been found to be an emerging pest in cocoa and was found to feed and bore into cocoa pods. The larvae feed on the rind of cocoa cherelles/pods, later bore into pods, feed the internal contents of the pods, the granular faecal pellets are seen outside the pods. When pods/cherelles touch each other, it is easy for the larvae to damage more than one pod/cherelle. Pods damaged by Conogethes are exposed to secondary infection by pathogens that lead to pod rot. The larvae sometimes feed on flower buds and flowers cushions. The damaged flower cushions may dry and shed prematurely. The damage of C. punctiferalis on cocoa is observed from December and peak incidence is noticed during March to May. On an average 2 per cent damage was recorded in the Central Plantation Crops Research Institute, Regional Station, Vittal. In order to develop a DNA-based molecular identification system for this species, primers were designed based on two nuclear genes viz., ribosomal protein S5 (RPS5) gene and carbamoyl phosphate synthetase/ aspartate transcarbamylase/dihydroorotase (CAD). PCR-amenable DNA was isolated from C. puntiferalis larva. The designed primers amplified single bands of expected sizes using genomic DNA as template. The amplicons were purified, cloned and sequenced and sequence analysis revealed close homology to the gene of interest from related moths.Not Availabl

    A network map of thrombopoietin signaling

    No full text
    Thrombopoietin (THPO), also known as megakaryocyte growth and development factor (MGDF), is a cytokine involved in the production of platelets. THPO is a glycoprotein produced by liver and kidney. It regulates the production of platelets by stimulating the differentiation and maturation of megakaryocyte progenitors. It acts as a ligand for MPL receptor, a member of the hematopoietic cytokine receptor superfamily and is essential for megakaryocyte maturation. THPO binding induces homodimerization of the receptor which results in activation of JAKSTAT and MAPK signaling cascades that subsequently control cellular proliferation, differentiation and other signaling events. Despite the importance of THPO signaling in various diseases and biological processes, a detailed signaling network of THPO is not available in any publicly available database. Therefore, in this study, we present a resource of signaling events induced by THPO that was manually curated from published literature on THPO. Our manual curation of thrombopoietin pathway resulted in identification of 48 molecular associations, 66 catalytic reactions, 100 gene regulation events, 19 protein translocation events and 43 activation/inhibition reactions that occur upon activation of thrombopoietin receptor by THPO. THPO signaling pathway is made available on NetPath, a freely available human signaling pathway resource developed previously by our group. We believe this resource will provide a platform for scientific community to accelerate further research in this area on potential therapeutic interventions

    Delineating miRNA profile induced by chewing tobacco in oral keratinocytes

    No full text
    The major established etiologic risk factor for oral cancer is tobacco (chewed, smoked and snuffed forms). Chewing form of tobacco is predominantly used in India making it the leading cause of oral cancer. Despite being one of the leading causes of oral cancer, the molecular alterations induced by chewing tobacco remains largely unclear. Carcinogenic effect of chewing tobacco is through chronic and not acute exposure. To understand the molecular alterations induced by chewing tobacco, we developed a cell line model where non-neoplastic oral keratinocytes were chronically exposed to chewing tobacco for a period of 6 months. This resulted in increased cellular proliferation and invasive ability of normal oral keratinocytes. Using this cellular model we studied the differential expression of miRNAs associated with chewing tobacco and the altered signaling pathways through which the aberrantly expressed miRNAs affect tumorigenesis. miRNA sequencing  was carried out using Illumina HiSeq 2500 platform  which resulted in the identification of 427 annotated miRNAs of which 10 were significantly dysregulated (≥ 4 fold; p-value ≤ 0.05) in tobacco exposed cells compared to untreated parental cells. To study the altered signaling in oral keratinocytes chronically exposed to chewing tobacco, we employed quantitative proteomics to characterize the dysregulated proteins. Integration of miRNA sequencing data with proteomic data resulted in identification of 36 proven protein targets which (≥1.5 fold; p-value ≤ 0.05) showed expression correlation with the 10 significantly dysregulated miRNAs. Pathway analysis of the dysregulated targets revealed enrichment of interferon signaling and mRNA processing related pathways in the chewing tobacco exposed cells. In addition, we also identified 6 novel miRNA in oral keratinocytes chronically exposed to chewing tobacco extract. Our study provides a framework to understand the oncogenic transformation induced by chromic tobacco exposure in normal oral keratinocytes

    Cigarette smoke induces metabolic reprogramming in lung cells

    No full text
    Cigarette smoking remains the leading cause of non-small cell lung carcinoma. Studies involving acute exposure of smoke on lung cells revealed induction of pre- cancerous state in lung cells. Recently few studies have reported the chronic effect of cigarette smoke in inducing cellular transformation. Yet no systemic study has been performed to understand the molecular alterations in lung cells due to cigarette smoke. Hence it is both important and necessary to study the chronic effect of cigarette smoke in a temporal setting to understand the molecular alterations. In this study, we carried out TMT based proteomic profiling of lung cells which were exposed to cigarette smoke condensate (CSC) for upto 12 months. We identified 2621 proteins in total, of which 145, 114, 87, 169 and 671 proteins were differentially expressed (p<0.05, 1.5 fold) in 2nd, 4th, 6th, 8th and 12th month respectively.Pathway analysis revealed enrichment of xenobiotic metabolism signaling for the first 8 months of smoke treatment, whereas continued exposure of smoke for 12 months revealed mitochondrial reprogramming in cells which includes dysregulation of oxidative phosphorylation machinery leading to enhanced reactive oxygen species and higher expression of enzymes involved in tricarboxylic acid cycle (TCA). In addition, chronic exposure of smoke led to overexpression of enzymes involved in glutamine metabolism, fatty acid degradation and lactate synthesis. This could possibly explain the availability of alternative source of carbon in TCA cycle apart from glycolytic pyruvate. Our data indicates that chronic exposure to cigarette smoke induces metabolic transformation in cells to support growth and survival

    Vanilla- Its Science of Cultivation, Curing, Chemistry, and Nutraceutical Properties

    No full text
    corecore