20,171 research outputs found

    Supermetallic conductivity in bromine-intercalated graphite

    Full text link
    Exposure of highly oriented pyrolytic graphite to bromine vapor gives rise to in-plane charge conductivities which increase monotonically with intercalation time toward values (for ~6 at% Br) that are significantly higher than Cu at temperatures down to 5 K. Magnetotransport, optical reflectivity and magnetic susceptibility measurements confirm that the Br dopes the graphene sheets with holes while simultaneously increasing the interplanar separation. The increase of mobility (~ 5E4 cm^2/Vs at T=300 K) and resistance anisotropy together with the reduced diamagnetic susceptibility of the intercalated samples suggests that the observed supermetallic conductivity derives from a parallel combination of weakly-coupled hole-doped graphene sheets.Comment: 5 pages, 4 figure

    Stacking Faults, Bound States, and Quantum Hall Plateaus in Crystalline Graphite

    Full text link
    We analyze the electronic properties of a simple stacking defect in Bernal graphite. We show that a bound state forms, which disperses as |\bfk-\bfK|^3 in the vicinity of either of the two inequivalent zone corners \bfK. In the presence of a strong c-axis magnetic field, this bound state develops a Landau level structure which for low energies behaves as E\nd_n\propto |n B|^{3/2}. We show that buried stacking faults have observable consequences for surface spectroscopy, and we discuss the implications for the three-dimensional quantum Hall effect (3DQHE). We also analyze the Landau level structure and chiral surface states of rhombohedral graphite, and show that, when doped, it should exhibit multiple 3DQHE plateaus at modest fields.Comment: 19 page

    Infrared probe of the anomalous magnetotransport of highly oriented pyrolytic graphite in the extreme quantum limit

    Full text link
    We present a systematic investigation of the magnetoreflectance of highly oriented pyrolytic graphite in magnetic field B up to 18 T . From these measurements, we report the determination of lifetimes tau associated with the lowest Landau levels in the quantum limit. We find a linear field dependence for inverse lifetime 1/tau(B) of the lowest Landau levels, which is consistent with the hypothesis of a three-dimensional (3D) to 1D crossover in an anisotropic 3D metal in the quantum limit. This enigmatic result uncovers the origin of the anomalous linear in-plane magnetoresistance observed both in bulk graphite and recently in mesoscopic graphite samples

    Ultraviolet/X-ray variability and the extended X-ray emission of the radio-loud broad absorption line quasar PG 1004+130

    Full text link
    We present the results of recent Chandra, XMM-Newton, and Hubble Space Telescope observations of the radio-loud (RL), broad absorption line (BAL) quasar PG 1004+130. We compare our new observations to archival X-ray and UV data, creating the most comprehensive, high signal-to-noise, multi-epoch, spectral monitoring campaign of a RL BAL quasar to date. We probe for variability of the X-ray absorption, the UV BAL, and the X-ray jet, on month-year timescales. The X-ray absorber has a low column density of NH=8×1020−4×1021N_{H}=8\times10^{20}-4\times10^{21} cm−2^{-2} when it is assumed to be fully covering the X-ray emitting region, and its properties do not vary significantly between the 4 observations. This suggests the observed absorption is not related to the typical "shielding gas" commonly invoked in BAL quasar models, but is likely due to material further from the central black hole. In contrast, the CIV BAL shows strong variability. The equivalent width (EW) in 2014 is EW=11.24±\pm0.56 \AA, showing a fractional increase of ΔEW/⟨EW⟩\Delta EW / \langle EW \rangle=1.16±\pm0.11 from the 2003 observation, 3183 days earlier in the rest-frame. This places PG 1004+130 among the most highly variable BAL quasars. By combining Chandra observations we create an exposure 2.5 times deeper than studied previously, with which to investigate the nature of the X-ray jet and extended diffuse X-ray emission. An X-ray knot, likely with a synchrotron origin, is detected in the radio jet ~8 arcsec (30 kpc) from the central X-ray source with a spatial extent of ~4 arcsec (15 kpc). No similar X-ray counterpart to the counterjet is detected. Asymmetric, non-thermal diffuse X-ray emission, likely due to inverse Compton scattering of Cosmic Microwave Background photons, is also detected.Comment: 15 pages, 7 figures, 3 tables. Accepted for publication in Ap

    Charge distribution and screening in layered graphene systems

    Full text link
    The charge distribution induced by external fields in finite stacks of graphene planes, or in semiinfinite graphite is considered. The interlayer electronic hybridization is described by a nearest neighbor hopping term, and the charge induced by the self consistent electrostatic potential is calculated within linear response (RPA). The screening properties are determined by contributions from inter- and intraband electronic transitions. In neutral systems, only interband transitions contribute to the charge polarizability, leading to insulating-like screening properties, and to oscillations in the induced charge, with a period equal to the interlayer spacing. In doped systems, we find a screening length equivalent to 2-3 graphene layers, superimposed to significant charge oscillations.Comment: 8 page

    X-raying the Winds of Luminous Active Galaxies

    Full text link
    We briefly describe some recent observational results, mainly at X-ray wavelengths, on the winds of luminous active galactic nuclei (AGNs). These winds likely play a significant role in galaxy feedback. Topics covered include (1) Relations between X-ray and UV absorption in Broad Absorption Line (BAL) and mini-BAL quasars; (2) X-ray absorption in radio-loud BAL quasars; and (3) Evidence for relativistic iron K BALs in the X-ray spectra of a few bright quasars. We also mention some key outstanding problems and prospects for future advances; e.g., with the International X-ray Observatory (IXO).Comment: 7 pages, 3 figures, to appear in proceedings of the conference "The Monster's Fiery Breath: Feedback in Galaxies, Groups, and Clusters", June 2009, Madison, Wisconsi

    Magnetic-field-induced Luttinger liquid

    Full text link
    It is shown that a strong magnetic field applied to a bulk metal induces a Luttinger-liquid phase. This phase is characterized by the zero-bias anomaly in tunneling: the tunneling conductance scales as a power-law of voltage or temperature. The tunneling exponent increases with the magnetic field as BlnB. The zero-bias anomaly is most pronounced for tunneling with the field applied perpendicular to the plane of the tunneling junction.Comment: a reference added, minor typos correcte

    Magnetic levitation force between a superconducting bulk magnet and a permanent magnet

    Full text link
    The current density in a disk-shaped superconducting bulk magnet and the magnetic levitation force exerted on the superconducting bulk magnet by a cylindrical permanent magnet are calculated from first principles. The effect of the superconducting parameters of the superconducting bulk is taken into account by assuming the voltage-current law and the material law. The magnetic levitation force is dominated by the remnant current density, which is induced by switching off the applied magnetizing field. High critical current density and flux creep exponent may increase the magnetic levitation force. Large volume and high aspect ratio of the superconducting bulk can enhance the magnetic levitation force further.Comment: 18 pages and 8 figure
    • …
    corecore