11,620 research outputs found

    Neutron unpolarized structure function F_2^n(x) from deep inelastic scattering off ^{3}He and ^{3}H

    Get PDF
    The possibility to safely extract the neutron deep inelastic structure function F2n(x)F_2^n(x) in the range 0≤x≤0.90 \le x \le 0.9 from joint measurements of deep inelastic structure functions of 3He^{3}He and 3H^{3}H is demonstrated. While the nuclear structure effects are relevant, the model dependence in this extraction linked to the N−NN-N interaction is shown to be weak.Comment: 5 pages. Proc. XVIIth Conf. on "Few-Body Problems in Physics", Evora( Portugal) Sept. 11, 2000. To appear in Nucl. Phys.

    Magnetic relaxation of type II superconductors in a mixed state of entrapped and shielded flux

    Full text link
    The magnetic relaxation has been investigated in type II superconductors when the initial magnetic state is realized with entrapped and shielded flux (ESF) contemporarily. This flux state is produced by an inversion in the magnetic field ramp rate due to for example a magnetic field overshoot. The investigation has been faced both numerically and by measuring the magnetic relaxation in BSCCO tapes. Numerical computations have been performed in the case of an infinite thick strip and of an infinite slab, showing a quickly relaxing magnetization in the first seconds. As verified experimentally, the effects of the overshoot cannot be neglected simply by cutting the first 10-100 seconds in the magnetic relaxation. On the other hand, at very long times, the magnetic states relax toward those corresponding to field profiles with only shielded flux or only entrapped flux, depending on the amplitude of the field change with respect to the full penetration field of the considered superconducting samples. In addition, we have performed numerical simulations in order to reproduce the relaxation curves measured on the BSCCO(2223) tapes; this allowed us to interpret correctly also the first seconds of the M(t)M(t) curves.Comment: 9 pages, 12 figures submit to PR

    Harmonics of the AC susceptibility as probes to differentiate the various creep models

    Full text link
    We measured the temperature dependence of the 1st and the 3rd harmonics of the AC magnetic susceptibility on some type II superconducting samples at different AC field amplitudes, hAC. In order to interpret the measurements, we computed the harmonics of the AC susceptibility as function of the temperature T, by integrating the non-linear diffusion equation for the magnetic field with different creep models, namely the vortex glass-collective creep (single-vortex, small bundle and large bundle) and Kim-Anderson model. We also computed them by using a non-linear phenomenological I-V characteristics, including a power law dependence of the pinning potential on hAC. Our experimental results were compared with the numerically computed ones, by the analysis of the Cole-Cole plots. This method results more sensitive than the separate component analysis, giving the possibility to obtain detailed information about the contribution of the flux dynamic regimes in the magnetic response of the analysed samples.Comment: 9 pages, 6 figures, submitted to Physica
    • …
    corecore