321 research outputs found

    Quantum wire networks with local Z2 symmetry

    Full text link
    For a large class of networks made of connected loops, in the presence of an external magnetic field of half flux quantum per loop, we show the existence of a large local symmetry group, generated by simultaneous flips of the electronic current in all the loops adjacent to a given node. Using an ultra-localized single particle basis adapted to this local Z_2 symmetry, we show that it is preserved by a large class of interaction potentials. As a main physical consequence, the only allowed tunneling processes in such networks are induced by electron-electron interactions and involve a simultaneous hop of two electrons. Using a mean-field picture and then a more systematic renormalization-group treatment, we show that these pair hopping processes do not generate a superconducting instability, but they destroy the Luttinger liquid behavior in the links, giving rise at low energy to a strongly correlated spin-density-wave state.Comment: 16 pages, 9 figures, v.2 section IV D added,accepted for publication in PR

    Regular networks of Luttinger liquids

    Full text link
    We consider arrays of Luttinger liquids, where each node is described by a unitary scattering matrix. In the limit of small electron-electron interaction, we study the evolution of these scattering matrices as the high-energy single particle states are gradually integrated out. Interestingly, we obtain the same renormalization group equations as those derived by Lal, Rao, and Sen, for a system composed of a single node coupled to several semi-infinite 1D wires. The main difference between the single node geometry and a regular lattice is that in the latter case, the single particle spectrum is organized into periodic energy bands, so that the renormalization procedure has to stop when the last totally occupied band has been eliminated. We therefore predict a strongly renormalized Luttinger liquid behavior for generic filling factors, which should exhibit power-law suppression of the conductivity at low temperatures E_{F}/(k_{F}a) > 1. Some fully insulating ground-states are expected only for a discrete set of integer filling factors for the electronic system. A detailed discussion of the scattering matrix flow and its implication for the low energy band structure is given on the example of a square lattice.Comment: 16 pages, 7 figure

    Large transconductance oscillations in a single-well vertical Aharonov-Bohm interferometer

    Full text link
    Aharonov-Bohm (AB) interference is reported for the first time in the conductance of a vertical nanostructure based on a single GaAs/AlGaAs quantum well (QW). The two lowest subbands of the well are spatially separated by the Hartree barrier originating from electronic repulsion in the modulation-doped QW and provide AB two-path geometry. Split-gates control the in-plane electronic momentum dispersion. In our system, we have clearly demonstrated AB interference in both electrostatic and magnetic modes. In the latter case the magnetic field was applied parallel to the QW plane, and perpendicular to the 0.02 um^2 AB loop. In the electrostatic mode of operation the single-QW scheme adopted led to large transconductance oscillations with relative amplitudes exceeding 30 %. The relevance of the present design strategy for the implementation of coherent nanoelectronic devices is underlined.Comment: Accepted for publication on Physical Review B Rapid Communication

    Theory of Incompressible States in a Narrow Channel

    Full text link
    We report on the properties of a system of interacting electrons in a narrow channel in the quantum Hall effect regime. It is shown that an increase in the strength of the Coulomb interaction causes abrupt changes in the width of the charge-density profile of translationally invariant states. We derive a phase diagram which includes many of the stable odd-denominator states as well as a novel fractional quantum Hall state at lowest half-filled Landau level. The collective mode evaluated at the half-filled case is strikingly similar to that for an odd-denominator fractional quantum Hall state.Comment: 4 pages, REVTEX, and 4 .ps file

    Stretching and unzipping nucleic acid hairpins using a synthetic nanopore

    Get PDF
    We have explored the electromechanical properties of DNA by using an electric field to force single hairpin molecules to translocate through a synthetic pore in a silicon nitride membrane. We observe a threshold voltage for translocation of the hairpin through the pore that depends sensitively on the diameter and the secondary structure of the DNA. The threshold for a diameter 1.5 < d < 2.3 nm is V > 1.5 V, which corresponds to the force required to stretch the stem of the hairpin, according to molecular dynamics simulations. On the other hand, for 1.0 < d < 1.5 nm, the threshold voltage collapses to V < 0.5 V because the stem unzips with a lower force than required for stretching. The data indicate that a synthetic nanopore can be used like a molecular gate to discriminate between the secondary structures in DNA

    Observation of Quantum Asymmetry in an Aharonov-Bohm Ring

    Full text link
    We have investigated the Aharonov-Bohm effect in a one-dimensional GaAs/GaAlAs ring at low magnetic fields. The oscillatory magnetoconductance of these systems are for the first time systematically studied as a function of density. We observe phase-shifts of π\pi in the magnetoconductance oscillations, and halving of the fundamental h/eh/e period, as the density is varied. Theoretically we find agreement with the experiment, by introducing an asymmetry between the two arms of the ring.Comment: 4 pages RevTex including 3 figures, submitted to Phys. Rev.

    Renormalization group study of the conductances of interacting quantum wire systems with different geometries

    Get PDF
    We examine the effect of interactions between the electrons on the conductances of some systems of quantum wires with different geometries. The systems include a wire with a stub in the middle, a wire containing a ring which can enclose a magnetic flux, and a system of four wires which are connected in the middle through a fifth wire. Each of the wires is taken to be a weakly interacting Tomonaga-Luttinger liquid, and scattering matrices are introduced at all the junctions. Using a renormalization group method developed recently for studying the flow of scattering matrices for interacting systems in one dimension, we compute the conductances of these systems as functions of the temperature and the wire lengths. We present results for all three regimes of interest, namely, high, intermediate and low temperature. These correspond respectively to the thermal coherence length being smaller than, comparable to and larger than the smallest wire length in the different systems, i.e., the length of the stub or each arm of the ring or the fifth wire. The renormalization group procedure and the formulae used to compute the conductances are different in the three regimes. We present a phenomenologically motivated formalism for studying the conductances in the intermediate regime where there is only partial coherence. At low temperatures, we study the line shapes of the conductances versus the electron energy near some of the resonances; the widths of the resonances go to zero with decreasing temperature. Our results show that the conductances of various systems of experimental interest depend on the temperature and lengths in a non-trivial way when interactions are taken into account.Comment: Revtex, 17 pages including 15 figure

    Diffraction of complex molecules by structures made of light

    Get PDF
    We demonstrate that structures made of light can be used to coherently control the motion of complex molecules. In particular, we show diffraction of the fullerenes C60 and C70 at a thin grating based on a standing light wave. We prove experimentally that the principles of this effect, well known from atom optics, can be successfully extended to massive and large molecules which are internally in a thermodynamic mixed state and which do not exhibit narrow optical resonances. Our results will be important for the observation of quantum interference with even larger and more complex objects.Comment: 4 pages, 3 figure

    Energy spectra of quantum rings

    Full text link
    Ring geometries have fascinated experimental and theoretical physicists over many years. Open rings connected to leads allow the observation of the Aharonov-Bohm effect, a paradigm of quantum mechanical phase coherence. The phase coherence of transport through a quantum dot embedded in one arm of an open ring has been demonstrated. The energy spectrum of closed rings has only recently been analysed by optical experiments and is the basis for the prediction of persistent currents and related experiments. Here we report magnetotransport experiments on a ring-shaped semiconductor quantum dot in the Coulomb blockade regime. The measurements allow us to extract the discrete energy levels of a realistic ring, which are found to agree well with theoretical expectations. Such an agreement, so far only found for few-electron quantum dots, is here extended to a many-electron system. In a semiclassical language our results indicate that electron motion is governed by regular rather than chaotic motion, an unexplored regime in many-electron quantum dots.Comment: 10 pages, 4 figure

    Analytical method for parameterizing the random profile components of nanosurfaces imaged by atomic force microscopy

    Full text link
    The functional properties of many technological surfaces in biotechnology, electronics, and mechanical engineering depend to a large degree on the individual features of their nanoscale surface texture, which in turn are a function of the surface manufacturing process. Among these features, the surface irregularities and self-similarity structures at different spatial scales, especially in the range of 1 to 100 nm, are of high importance because they greatly affect the surface interaction forces acting at a nanoscale distance. An analytical method for parameterizing the surface irregularities and their correlations in nanosurfaces imaged by atomic force microscopy (AFM) is proposed. In this method, flicker noise spectroscopy - a statistical physics approach - is used to develop six nanometrological parameters characterizing the high-frequency contributions of jump- and spike-like irregularities into the surface texture. These contributions reflect the stochastic processes of anomalous diffusion and inertial effects, respectively, in the process of surface manufacturing. The AFM images of the texture of corrosion-resistant magnetite coatings formed on low-carbon steel in hot nitrate solutions with coating growth promoters at different temperatures are analyzed. It is shown that the parameters characterizing surface spikiness are able to quantify the effect of process temperature on the corrosion resistance of the coatings. It is suggested that these parameters can be used for predicting and characterizing the corrosion-resistant properties of magnetite coatings.Comment: 7 pages, 3 figures, 2 tables; to be published in Analys
    corecore