741 research outputs found
Properties of heavy quarkonia and B_c mesons in the relativistic quark model
The mass spectra and electromagnetic decay rates of charmonium, bottomonium
and B_c mesons are comprehensively investigated in the relativistic quark
model. The presence of only heavy quarks allows the expansion in powers of
their velocities. All relativistic corrections of order v^2/c^2, including
retardation effects and one-loop radiative corrections, are systematically
taken into account in the computations of the mass spectra. The obtained wave
functions are used for the calculation of radiative magnetic dipole (M1) and
electric dipole (E1) transitions. It is found that relativistic effects play a
substantial role. Their account and the proper choice of the Lorentz structure
of the quark-antiquark interaction in a meson is crucial for bringing
theoretical predictions in accord with experimental data. A detailed comparison
of the calculated decay rates and branching fractions with available
experimental data for radiative decays of charmonium and bottomonium is
presented. The possibilities to observe the currently missing spin-singlet S
and P states as well as D states in bottomonium are discussed. The results for
B_c masses and decays are compared with other quark model predictions.Comment: 31 pages, 2 figures, minor correction
Effect of the sample geometry on the second magnetization peak in single crystalline BaKBiO thick film
Magnetization hysteresis loop measurements performed on a single
crystalline BaKBiO superconducting thick film reveal
pronounced sample geometry dependence of the "second magnetization peak" (SMP),
i.e. a maximum in the width of occurring at the field .
In particular, it is found that the SMP vanishes decreasing the film dimension.
We argue that the observed sample geometry dependence of the SMP cannot be
accounted for by models which assume a vortex pinning enhancement as the origin
of the SMP. Our results can be understood considering the thermomagnetic
instability effect and/or non-uniform current distribution at
in large enough samples.Comment: 8 pages 3 figure
Relativistic Description of Exclusive Semileptonic Decays of Heavy Mesons
Using quasipotential approach, we have studied exclusive semileptonic decays
of heavy mesons with the account of relativistic effects. Due to more complete
relativistic description of the quark more precise expressions for
semileptonic form factors are obtained. Various differential distributions in
exclusive semileptonic decays of heavy mesons are calculated. It is argued that
consistent account of relativistic effects and HQET motivated choice of the
parameters of quark-antiquark potential allow to get reliable value for the
ratio in the decay as well as the
ratio~. All calculated branching
ratios are in accord with available experimental data.Comment: 18 pages, LATEX, 2 figures inclosed + 4 Postscript figure
Relativistic description of the charmonium mass spectrum
The charmonium mass spectrum is considered in the framework of the
constituent quark model with the relativistic treatment of the c quark. The
obtained masses are in good agreement with the existing experimental data
including the mass of eta_c(2S).Comment: 5 page
Algebraic approach to the spectral problem for the Schroedinger equation with power potentials
The method reducing the solution of the Schroedinger equation for several
types of power potentials to the solution of the eigenvalue problem for the
infinite system of algebraic equations is developed. The finite truncation of
this system provides high accuracy results for low-lying levels. The proposed
approach is appropriate both for analytic calculations and for numerical
computations. This method allows also to determine the spectrum of the
Schroedinger-like relativistic equations. The heavy quarkonium (charmonium and
bottomonium) mass spectra for the Cornell potential and the sum of the Coulomb
and oscillator potentials are calculated. The results are in good agreement
with experimental data.Comment: 17 pages, including 6 PostScript figures (epsf style
Quark-antiquark potential with retardation and radiative contributions and the heavy quarkonium mass spectra
The charmonium and bottomonium mass spectra are calculated with the
systematic account of all relativistic corrections of order v^2/c^2 and the
one-loop radiative corrections. Special attention is paid to the contribution
of the retardation effects to the spin-independent part of the quark-antiquark
potential, and a general approach to accounting for retardation effects in the
long-range (confining) part of the potential is presented. A good fit to
available experimental data on the mass spectra is obtained.Comment: 20 pages, revtex, 2 Postscript figure
Tuning the Non-local Spin-Spin Interaction between Quantum Dots with a Magnetic Field
We describe a device where the non-local spin-spin interaction between two
quantum dots can be turned on and off and even changed sign with a very small
magnetic field. The setup consists of two quantum dots at the edge of two
two-dimensional electron gases (2DEGs). The quantum dots' spins are coupled
through a RKKY-like interaction mediated by the electrons in the 2DEGs. A small
magnetic field perpendicular to the plane of the 2DEG is used as a tuning
parameter. When the cyclotron radius is commensurate with the interdot
distance, the spin-spin interaction is amplified by a few orders of magnitude.
The sign of the interaction is controlled by finely tuning the magnetic field.
Our setup allows for several dots to be coupled in a linear arrangement and it
is not restricted to nearest-neighbors interaction.Comment: 4 pages, 5 figures. Published versio
Exclusive semileptonic B decays to radially excited D mesons
Exclusive semileptonic B decays to radially excited charmed mesons are
investigated at the first order of the heavy quark expansion. The arising
leading and subleading Isgur-Wise functions are calculated in the framework of
the relativistic quark model. It is found that the 1/m_Q corrections play an
important role and substantially modify results. An interesting interplay
between different corrections is found. As a result the branching ratio for the
B-> D'e\nu decay is essentially increased by 1/m_Q corrections, while the one
for B-> D*'e\nu is only slightly influenced by them.Comment: 19 pages, revtex, 6 figures, uses rotating.st
Rare radiative B decays to orbitally excited K mesons
The exclusive rare radiative B meson decays to orbitally excited axial-vector
mesons K_1^*(1270), K_1(1400) and to the tensor meson K_2^*(1430) are
investigated in the framework of the relativistic quark model based on the
quasipotential approach in quantum field theory. These decays are considered
without employing the heavy quark expansion for the s quark. Instead the s
quark is treated to be light and the expansion in inverse powers of the large
recoil momentum of the final K^{**} meson is used to simplify calculations. It
is found that the ratio of the branching fractions of rare radiative B decays
to axial vector K^*_1(1270) and K_1(1400) mesons is significantly influenced by
relativistic effects. The obtained results for B decays to the tensor meson
K_2^*(1430) agree with recent experimental data from CLEO.Comment: 17 pages, revte
Epitaxial relations, crystalline structure and defects in the double Si (111)/hR6 CaSi/Si (111) heterostructures
The morphology and crystalline structure of Si(111)/CaSi2/Si(111) double heterostructures (DHS)
formed by the Ca reactive deposition epitaxy on the Si(111)7x7 surface and Si overgrowth at 500
oC have been studied by atomic force microscopy and transmission electron microscopy. It was
established that stressed CaSi2 layers with stacking faults in (001)CaSi2 plane and {111}-twinned
epitaxial or polycrystalline Si layers were grown. Epitaxial Si layers while had orientation
parallel to the Si(111) substrate surface. CaSi2[100]||Si[1-10] and CaSi2(001)||Si(111) epitaxial
relations were conserved for all grown DHS and they did not depend from the silicon growth
mode: molecular beam epitaxy (MBE) or solid phase epitaxy (SPE). The CaSi2 layer in
(001)CaSi2 plane has a hR6 modification and parameters: a=0.393±0.002 nm; c=3.09±0.18 nm at
SPE Si growth mode. But some another parameters: a=0.382±0.002 nm; c=3.09 ±0.18 nm were
observed at MBE Si growth mode. The compression in c parameter on near 1.07-1.14% as
compared with c-value (3.06 nm) for tabular CaSi2 data is established fact for both HDS. The
observed differences in a parameter +1.85% (at SPE mode) and -1.08% (at MBE mode) is not
clear now, and demands additional experiments. Some assumptions about mechanisms of
occurrence and distribution of compressions and stretching in the CaSi2 lattice were made
- …