26 research outputs found

    Are Metastases from Metastases Clinical Relevant? Computer Modelling of Cancer Spread in a Case of Hepatocellular Carcinoma

    Get PDF
    Background: Metastasis formation remains an enigmatic process and one of the main questions recently asked is whether metastases are able to generate further metastases. Different models have been proposed to answer this question; however, their clinical significance remains unclear. Therefore a computer model was developed that permits comparison of the different models quantitatively with clinical data and that additionally predicts the outcome of treatment interventions. Methods: The computer model is based on discrete events simulation approach. On the basis of a case from an untreated patient with hepatocellular carcinoma and its multiple metastases in the liver, it was evaluated whether metastases are able to metastasise and in particular if late disseminated tumour cells are still capable to form metastases. Additionally, the resection of the primary tumour was simulated. The simulation results were compared with clinical data. Results: The simulation results reveal that the number of metastases varies significantly between scenarios where metastases metastasise and scenarios where they do not. In contrast, the total tumour mass is nearly unaffected by the two different modes of metastasis formation. Furthermore, the results provide evidence that metastasis formation is an early event and that late disseminated tumour cells are still capable of forming metastases. Simulations also allow estimating how the resection of the primary tumour delays the patient’s death. Conclusion: The simulation results indicate that for this particular case of a hepatocellular carcinoma late metastases, i.e.

    TIAF1 self-aggregation in peritumor capsule formation, spontaneous activation of SMAD-responsive promoter in p53-deficient environment, and cell death

    Get PDF
    Self-aggregation of transforming growth factor β (TGF-β)1-induced antiapoptotic factor (TIAF1) is known in the nondemented human hippocampus, and the aggregating process may lead to generation of amyloid β (Aβ) for causing neurodegeneration. Here, we determined that overexpressed TIAF1 exhibits as aggregates together with Smad4 and Aβ in the cancer stroma and peritumor capsules of solid tumors. Also, TIAF1/Aβ aggregates are shown on the interface between brain neural cells and the metastatic cancer cell mass. TIAF1 is upregulated in developing tumors, but may disappear in established metastatic cancer cells. Growing neuroblastoma cells on the extracellular matrices from other cancer cell types induced production of aggregated TIAF1 and Aβ. In vitro induction of TIAF1 self-association upregulated the expression of tumor suppressors Smad4 and WW domain-containing oxidoreductase (WOX1 or WWOX), and WOX1 in turn increased the TIAF1 expression. TIAF1/Smad4 interaction further enhanced Aβ formation. TIAF1 is known to suppress SMAD-regulated promoter activation. Intriguingly, without p53, self-aggregating TIAF1 spontaneously activated the SMAD-regulated promoter. TIAF1 was essential for p53-, WOX1- and dominant-negative JNK1-induced cell death. TIAF1, p53 and WOX1 acted synergistically in suppressing anchorage-independent growth, blocking cell migration and causing apoptosis. Together, TIAF1 shows an aggregation-dependent control of tumor progression and metastasis, and regulation of cell death

    'Omic approaches to preventing or managing metastatic breast cancer

    Get PDF
    Early detection of metastasis-prone breast cancers and characterization of residual metastatic cancers are important in efforts to improve management of breast cancer. Applications of genome-scale molecular analysis technologies are making these complementary approaches possible by revealing molecular features uniquely associated with metastatic disease. Assays that reveal these molecular features will facilitate development of anatomic, histological and blood-based strategies that may enable detection prior to metastatic spread. Knowledge of these features also will guide development of therapeutic strategies that can be applied when metastatic disease burden is low, thereby increasing the probability of a curative response

    Accelerating drug discovery

    No full text
    Although the evolution of '-omics' methodologies is still in its infancy, both the pharmaceutical industry and patients could benefit from their implementation in the drug development proces

    Casting light on molecular events underlying anti-cancer drug treatment: what can be seen from the proteomics point of view?

    Full text link
    Regardless of continuous advances in technology and expansion of the knowledge in the field of genomic information, cancer still remains one of the leading causes of death in developed countries for many reasons, including non-selectiveness of commonly used anti-cancer drugs that often influence non-specific rather than tumour-specific targets. As cancer cells are characterized by the ability to divide and multiply in an uncontrolled manner whereby a set of specific proteins modulate cell division processes, proteomics seems to be a suitable tool for seeking out molecular mediators of anti-cancer drugs action and resistance, thus improving chemotherapy outcome. This review will focus on the recent knowledge of the molecular mechanisms involved in the anti-cancer drugs response revealed by the proteomics tools. In addition, we will touch upon the effects of "gene drugs" with p53 and p21(waf1/cip1) genes on the protein complement of tumour cells assessed by the two-dimensional gel electrophoresis combined with mass spectrometry. Such studies could substantially contribute to further drug optimization prior to its clinical use and represent an important but still small step in the long way of drug discovery. However, fluctuations in protein expression, distribution, posttranslational modifications, interactions, functions and compartmentalization make it difficult to use exclusively expression proteomics data without putting it in broader biological context. Thus, the challenge today is to shift from the identification of drug response and disease biomarkers to more time-consuming process of revealing the biochemical mechanism that connects a specific protein with a disease or cellular response to a drug

    Proteomics in antitumor research

    No full text
    Proteins are the molecular players of fine-tuned regulatory pathways that underlie the behavior of any cell type. Derangement of this wide protein circuitry has a profound effect on cell life and ultimately contributes to the development of diseases such as cancer. New proteomic technologies are rapidly evolving to define and characterize the nodes of this altered protein network, both inside and outside cancer cells. Hopefully, these technologies will become user-friendly laboratory tools to improve cancer management from early detection to the development of rational and patienttailored therapeutic strategies

    Differential antiproliferative mechanisms of novel derivative of benzimidazo[1,2-alpha]quinoline in colon cancer cells depending on their p53 status

    Full text link
    In the present article, we describe a mechanistic study of a novel derivative of N-amidino-substituted benzimidazo[1,2-alpha]quinoline in two human colorectal cancer cell lines differing in p53 gene status. We used a proteomic approach based on two-dimensional gel electrophoresis coupled with mass spectrometry to complement the results obtained by common molecular biology methods for analyzing cell proliferation, cell cycle, and apoptosis. Tested quinoline derivative inhibited colon cancer cell growth, whereby p53 gene status seemed to be critical for its differential response patterns. DNA damage and oxidative stress are likely to be the common triggers of molecular events underlying its antiproliferative effects. In HCT 116 (wild-type p53), this compound induced a p53-dependent response resulting in accumulation of the G(1)- and S-phase cells and induction of apoptosis via both caspase-3-dependent and caspase-independent pathways. Quinoline derivative triggered transient, p53-independent G(2)-M arrest in mutant p53 cells (SW620) and succeeding mitotic transition, whereby these cells underwent cell death probably due to aberrant mitosis (mitotic catastrophe). Proteomic approach used in this study proved to be a valuable tool for investigating cancer cell response to newly synthesized compound, as it specifically unraveled some molecular changes that would not have been otherwise detected (e.g., up-regulation of the p53-dependent chemotherapeutic response marker maspin in HCT 116 and impairment in ribosome biogenesis in SW620). Finally, antiproliferative effects of tested quinoline derivative on SW620 cells strongly support its possible role as an antimetastatic agent and encourage further in vivo studies on the chemotherapeutic potential of this compound against colorectal carcinoma
    corecore