13 research outputs found
Chance mechanisms affecting the burden of metastases
BACKGROUND: The burden of cancer metastases within an individual is commonly used to clinically characterize a tumor's biological behavior. Assessments like these implicitly assume that spurious effects can be discounted. Here the influence of chance on the burden of metastasis is studied to determine whether or not this assumption is valid. METHODS: Monte Carlo simulations were performed to estimate tumor burdens sustained by individuals with cancer, based upon empirically derived and validated models for the number and size distributions of metastases. Factors related to the intrinsic metastatic potential of tumors and their host microenvironments were kept constant, to more clearly demonstrate the contribution from chance. RESULTS: Under otherwise identical conditions, both the simulated numbers and the sizes of metastases were highly variable. Comparable individuals could sustain anywhere from no metastases to scores of metastases, and the sizes of the metastases ranged from microscopic to macroscopic. Despite the marked variability in the number and sizes of the metastases, their respective growth times were rather more narrowly distributed. In such situations multiple occult metastases could develop into fully overt lesions within a comparatively short time period. CONCLUSION: Chance can have a major effect on the burden of metastases. Random variability can be so great as to make individual assessments of tumor biology unreliable, yet constrained enough to lead to the apparently simultaneous appearance of multiple overt metastases
HMGA1 drives stem cell, inflammatory pathway, and cell cycle progression genes during lymphoid tumorigenesis
<p>Abstract</p> <p>Background</p> <p>Although the <it>high mobility group A1 </it>(<it>HMGA1</it>) gene is widely overexpressed in diverse cancers and portends a poor prognosis in some tumors, the molecular mechanisms that mediate its role in transformation have remained elusive. <it>HMGA1 </it>functions as a potent oncogene in cultured cells and induces aggressive lymphoid tumors in transgenic mice. Because HMGA1 chromatin remodeling proteins regulate transcription, <it>HMGA1 </it>is thought to drive malignant transformation by modulating expression of specific genes. Genome-wide studies to define HMGA1 transcriptional networks during tumorigenesis, however, are lacking. To define the HMGA1 transcriptome, we analyzed gene expression profiles in lymphoid cells from <it>HMGA1a </it>transgenic mice at different stages in tumorigenesis.</p> <p>Results</p> <p>RNA from lymphoid samples at 2 months (before tumors develop) and 12 months (after tumors are well-established) was screened for differential expression of > 20,000 unique genes by microarray analysis (Affymetrix) using a parametric and nonparametric approach. Differential expression was confirmed by quantitative RT-PCR in a subset of genes. Differentially expressed genes were analyzed for cellular pathways and functions using Ingenuity Pathway Analysis. Early in tumorigenesis, HMGA1 induced inflammatory pathways with NFkappaB identified as a major node. In established tumors, HMGA1 induced pathways involved in cell cycle progression, cell-mediated immune response, and cancer. At both stages in tumorigenesis, HMGA1 induced pathways involved in cellular development, hematopoiesis, and hematologic development. Gene set enrichment analysis showed that stem cell and immature T cell genes are enriched in the established tumors. To determine if these results are relevant to human tumors, we knocked-down HMGA1 in human T-cell leukemia cells and identified a subset of genes dysregulated in both the transgenic and human lymphoid tumors.</p> <p>Conclusions</p> <p>We found that <it>HMGA1 </it>induces inflammatory pathways early in lymphoid tumorigenesis and pathways involved in stem cells, cell cycle progression, and cancer in established tumors. <it>HMGA1 </it>also dyregulates genes and pathways involved in stem cells, cellular development and hematopoiesis at both early and late stages of tumorigenesis. These results provide insight into <it>HMGA1 </it>function during tumor development and point to cellular pathways that could serve as therapeutic targets in lymphoid and other human cancers with aberrant <it>HMGA1 </it>expression.</p
Comparing different dosing regimens of bevacizumab in the treatment of neovascular macular degeneration: study protocol for a randomised controlled trial
Background
Bevacizumab (AvastinÂź) is as effective as ranibizumab (LucentisÂź) in the treatment of neovascular age-related macular degeneration (nAMD). However it has two important structural differences. First, it has two active sites instead of one; second, it retains the Fc portion of the antibody which would be expected to confer a significantly longer half-life. These agents have been associated with systemic complications including strokes, so it is desirable to use the smallest effective dose. Furthermore, the standard dosing regimen requires monthly hospital visits, which present a significant challenge both to the hospital services and to the patients (who are elderly).
Methods/Design
Patients â„50 years who are eligible for anti-vascular endothelial growth factor (VEGF) treatment of nAMD in the NHS, who are either newly referred for treatment or have reactivation of nAMD and who have not received treatment to either eye for the previous six months.
We have designed a factorial multi-centre masked randomised controlled trial using bevacizumab as the intervention, with patients randomised to one of four arms: to standard or low dose and to monthly or two-monthly patient review. The aim is to recruit sufficient patients (around 1,000) to obtain 304 patients meeting the endpoint over a four-year period. The primary endpoint is time to treatment failure to be analysed using Cox regression.
Discussion
This randomised control trial will show if half dose and two monthly as required is as effective as full dose and monthly regimes. A two monthly as required regimen of Bevacizumab would significantly reduce both the cost and the service delivery burden for the treatment of nAMD while a reduced dose would be expected to enhance the safety profile of this treatment regime.
Trial registration
International Standard Randomised Controlled Trial Number: ISRCTN95654194 webcite, registered on 22 September 2009