53 research outputs found

    Assessing water circularity in cities: Methodological framework with a case study

    Get PDF
    With significant efforts made to consider water reuse in cities, a robust and replicable framework is needed to quantify the degree of urban water circularity and its impacts from a systems perspective. A quantitative urban water circularity framework can benchmark the progress and compare the impacts of water circularity policies across cities. In that pursuit, we bring together concepts of resource circularity and material flow analysis (MFA) to develop a demand- and discharge-driven water circularity assessment framework for cities. The framework integrates anthropogenic water flow data based on the water demand in an urban system and treated wastewater discharge for primary water demand substitution. Leveraging the water mass balance, we apply the framework in evaluating the state of water circularity in Singapore from 2015 to 2019. Overall, water circularity has been steadily increasing, with 24.9% of total water demand fulfilled by secondary flows in 2019, potentially reaching 39.6% at maximum water recycling capacity. Finally, we discuss the wider implications of water circularity assessments for energy, the environment, and urban water infrastructure and policy. Overall, this study provides a quantitative tool to assess the scale of water circularity within engineered urban water infrastructure and its application to develop macro-level water systems planning and policy insights

    Network Centrality of Metro Systems

    Get PDF
    Whilst being hailed as the remedy to the world’s ills, cities will need to adapt in the 21st century. In particular, the role of public transport is likely to increase significantly, and new methods and technics to better plan transit systems are in dire need. This paper examines one fundamental aspect of transit: network centrality. By applying the notion of betweenness centrality to 28 worldwide metro systems, the main goal of this paper is to study the emergence of global trends in the evolution of centrality with network size and examine several individual systems in more detail. Betweenness was notably found to consistently become more evenly distributed with size (i.e. no “winner takes all”) unlike other complex network properties. Two distinct regimes were also observed that are representative of their structure. Moreover, the share of betweenness was found to decrease in a power law with size (with exponent 1 for the average node), but the share of most central nodes decreases much slower than least central nodes (0.87 vs. 2.48). Finally the betweenness of individual stations in several systems were examined, which can be useful to locate stations where passengers can be redistributed to relieve pressure from overcrowded stations. Overall, this study offers significant insights that can help planners in their task to design the systems of tomorrow, and similar undertakings can easily be imagined to other urban infrastructure systems (e.g., electricity grid, water/wastewater system, etc.) to develop more sustainable cities

    Determining causality in travel mode choice

    Get PDF
    This article presents one of the pioneering studies on causal modeling in travel mode choice decision-making using causal discovery algorithms. These models are a major advancement from conventional correlation-based techniques. We propose a novel methodology that combines causal discovery with structural equation modeling (SEM). This modeling approach overcomes some of the limitations of SEM by combining the strengths of both causal discovery and SEM. Causal discovery algorithms determine causal graphs from observational data and domain knowledge, and SEMs estimate direct causal effects and test the performance of causal discovery algorithms. In this study, we test four causal discovery algorithms: Peter-Clark (PC), Fast Causal Inference (FCI), Fast Greedy Equivalence Search (FGES), and Direct Linear Non-Gaussian Acyclic Models (DirectLiNGAM). The results show that DirectLiNGAM based SEM model best captures causality in mode choice behavior. It passes several goodness-of-fit tests, including Root Mean Square Error of Approximation (RMSEA) and Goodness-of-Fit Index (GFI), and it achieves the lowest Bayesian Information Criterion (BIC) value. The analyses are conducted on data collected from the 2017 National Household Travel Survey in the New York Metropolitan area

    Network Structure and City Size

    Get PDF
    Network structure varies across cities. This variation may yield important knowledge about how the internal structure of the city affects its performance. This paper systematically compares a set of surface transportation network structure variables (connectivity, hierarchy, circuity, treeness, entropy, accessibility) across the 50 largest metropolitan areas in the United States. A set of scaling parameters are discovered to show how network size and structure vary with city size. These results suggest that larger cities are physically more inter-connected. Hypotheses are presented as to why this might obtain. This paper then consistently measures and ranks access to jobs across 50 US metropolitan areas. It uses that accessibility measure, along with network structure variables and city size to help explain journey-to-work time and auto mode share in those cities. A 1 percent increase in accessibility reduces average metropolitan commute times by about 90 seconds each way. A 1 percent increase in network connectivity reduces commute time by 0.1 percent. A 1 percent increase in accessibility results in a 0.0575 percent drop in auto mode share, while a 1 percent increase in treeness reduces auto mode share by 0.061 percent. Use of accessibility and network structure measures is important for planning and evaluating the performance of network investments and land use changes

    The COVID-19 pandemic and the future of telecommuting in the United States

    Get PDF
    This study focuses on an important transport-related long-term effect of the COVID-19 pandemic in the United States: an increase in telecommuting. Analyzing a nationally representative panel survey of adults, we find that 40–50% of workers expect to telecommute at least a few times per month post-pandemic, up from 24% pre-COVID. If given the option, 90–95% of those who first telecommuted during the pandemic plan to continue the practice regularly. We also find that new telecommuters are demographically similar to pre-COVID telecommuters. Both pre- and post-COVID, higher educational attainment and income, together with certain job categories, largely determine whether workers have the option to telecommute. Despite growth in telecommuting, approximately half of workers expect to remain unable to telecommute and between 2/3 and 3/4 of workers expect their post-pandemic telecommuting patterns to be unchanged from their pre-COVID patterns. This limits the contribution telecommuting can make to reducing peak hour transport demand
    • …
    corecore