1,135 research outputs found

    Aging phenomena in nonlinear dissipative chains: Application to polymer

    Get PDF
    We study energy relaxation in a phenomenological model for polymer built from rheological considerations: a one dimensional nonlinear lattice with dissipative couplings. These couplings are well known in polymer's community to be possibly responsible of beta-relaxation (as in Burger's model). After thermalisation of this system, the extremities of the chain are put in contact with a zero-temperature reservoir, showing the existence of surprising quasi-stationary states with non zero energy when the dissipative coupling is high. This strange behavior, due to long-lived nonlinear localized modes, induces stretched exponential laws. Furthermore, we observe a strong dependence on the waiting time tw after the quench of the two-time intermediate correlation function C(tw+t,tw). This function can be scaled onto a master curve, similar to the case of spin or Lennard-Jones glasses.Comment: 8 pages, 10 figure

    Electrical noise properties in aging materials

    Full text link
    The electric thermal noise has been measured in two aging materials, a colloidal suspension (Laponite) and a polymer (polycarbonate), presenting very slow relaxation towards equilibrium. The measurements have been performed during the transition from a fluid-like to a solid-like state for the gel and after a quench for the polymer. For both materials we have observed that the electric noise is characterized by a strong intermittency, which induces a large violation of the Fluctuation Dissipation Theorem (FDT) during the aging time, and may persist for several hours at low frequency. The statistics of these intermittent signals and their dependance on the quench speed for the polymer or on sample concentration for the gel are studied. The results are in a qualitative agreement with recent models of aging, that predict an intermittent dynamics.Comment: SPIE Proceeding Journa

    Advanced memory effects in the aging of a polymer glass

    Full text link
    A new kind of memory effect on low frequency dielectric measurements on plexiglass (PMMA) is described. These measurements show that cooling and heating the sample at constant rate give an hysteretic dependence on temperature of the dielectric constant ϵ\epsilon. A temporary stop of cooling produces a downward relaxation of ϵ\epsilon. Two main features are observed i) when cooling is resumed ϵ\epsilon goes back to the values obtained without the cooling stop (i.e. the low temperature state is independent of the cooling history) ii) upon reheating ϵ\epsilon keeps the memory of all the cooling stops({\it Advanced memory}). The dependence of this effect on frequency and on the cooling rate is analyzed. The memory deletion is studied too. Finally the results are compared with those of similar experiments done in spin glasses and with the famous experiments of Kovacs.Comment: to be published in the European Physical Journa

    Effective Temperature in a Colloidal Glass

    Get PDF
    We study the Brownian motion of particles trapped by optical tweezers inside a colloidal glass (Laponite) during the sol-gel transition. We use two methods based on passive rheology to extract the effective temperature from the fluctuations of the Brownian particles. All of them give a temperature that, within experimental errors, is equal to the heat bath temperature. Several interesting features concerning the statistical properties and the long time correlations of the particles are observed during the transition.Comment: to be published in Philosophical Magazin

    Work fluctuation theorems for harmonic oscillators

    Get PDF
    The work fluctuations of an oscillator in contact with a thermostat and driven out of equilibrium by an external force are studied experimentally and theoretically within the context of Fluctuation Theorems (FTs). The oscillator dynamics is modeled by a second order Langevin equation. Both the transient and stationary state fluctuation theorems hold and the finite time corrections are very different from those of a first order Langevin equation. The periodic forcing of the oscillator is also studied; it presents new and unexpected short time convergences. Analytical expressions are given in all cases

    Fluctuation theorems for harmonic oscillators

    Get PDF
    We study experimentally the thermal fluctuations of energy input and dissipation in a harmonic oscillator driven out of equilibrium, and search for Fluctuation Relations. We study transient evolution from the equilibrium state, together with non equilibrium steady states. Fluctuations Relations are obtained experimentally for both the work and the heat, for the stationary and transient evolutions. A Stationary State Fluctuation Theorem is verified for the two time prescriptions of the torque. But a Transient Fluctuation Theorem is satisfied for the work given to the system but not for the heat dissipated by the system in the case of linear forcing. Experimental observations on the statistical and dynamical properties of the fluctuation of the angle, we derive analytical expressions for the probability density function of the work and the heat. We obtain for the first time an analytic expression of the probability density function of the heat. Agreement between experiments and our modeling is excellent

    Failure time and critical behaviour of fracture precursors in heterogeneous materials

    Full text link
    The acoustic emission of fracture precursors, and the failure time of samples of heterogeneous materials (wood, fiberglass) are studied as a function of the load features and geometry. It is shown that in these materials the failure time is predicted with a good accuracy by a model of microcrack nucleation proposed by Pomeau. We find that the time interval % \delta t between events (precursors) and the energy ε\varepsilon are power law distributed and that the exponents of these power laws depend on the load history and on the material. In contrast, the cumulated acoustic energy EE presents a critical divergency near the breaking time τ\tau which is % E\sim \left( \frac{\tau -t}\tau \right) ^{-\gamma }. The positive exponent % \gamma is independent, within error bars, on all the experimental parameters.Comment: to be published on European Physical Journa
    corecore