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Abstract. We study the energy relaxation in a one-dimensional nonlinear lattice with dissipative couplings.
After thermalisation of this system, the extremities of the chain are put in contact with a zero-temperature
reservoir, showing the existence of surprising quasi-stationary states with non zero energy, tough the
dissipative coupling is high. This strange behavior, due to long-lived nonlinear localized modes, induces
stretched exponential relaxation laws. Furthermore, we observe a strong dependence on the waiting time
tw after the quench of the two-time intermediate correlation function C(tw+t, tw). This function can be
scaled onto a master curve, similar to the case of spin or Lennard-Jones glasses.
Keywords:
Localization of energy, Breather modes, Stretched exponential, Lattices, Aging.

PACS.

05.20.-y Classical statistical mechanics
05.45.-a Nonlinear dynamics and nonlinear dynamical systems

1 Introduction

The existence of spatially localized nonlinear excitations
is old and well-known, and has been extensively studied
in partial differential equations and in many experimental
systems. However, this topic has been completely reacti-
vated in the beginning of the 90’s by the discovery of the
striking properties of ”discrete breathers”. These local-
ized and oscillating modes, solutions of discrete lattices,
were discovered [1] in 1974 but the understanding of their
generality in nonlinear multi-dimensional lattices is due to
Takeno and Sievers [2] in 1986. Later, breathers have been
shown to be spontaneously generated [3] in thermalised
systems, and finally, Aubry and MacKay have proved [4]
rigorously the existence of discrete breathers, exact solu-
tions of some discrete lattices. This has initiated a period
of great activity about the conditions of existence, and of
stability of these modes but also about their possible ap-
plications in real systems. Experimental evidences of such
excitations have thus been reported in materials [5], mag-
netic chains [6] and series of Josephson Junctions [7].

One of the important feature of these excitations is
that they modify strongly the energy relaxation [8,9] and
induces non-equilibrium dynamics. For instance in nonlin-
ear systems where breathers are mobiles, they could con-
tribute directly to the energy transfer and modify relax-
ation properties in a nonexponential dependance. This in-
teresting phenomenon has been invoked in several physical
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settings such as, DNA molecules [10], hydrocarbon struc-
tures [11], targeted energy transfer between donors and
acceptors in biomolecules [12]. When the coupling is much
smaller than the nonlinearity, the presence of essentially
pinned long-lived breathers in nonlinear systems blocks
the energy propagation [8]. The macroscopic manifesta-
tion of this phenomenon is a very slow relaxation of the
total energy, reminiscent of the long lifetime of metastable
states in glassy systems observed after a quench.

The case of relaxation phenomena in nonlinear lattices
with bulk dissipation has received much less attention,
though experimental systems belong to this class [13]. This
is the reason why, in this paper, we will examine the in-
fluence in energy relaxation of a dissipative coupling by
performing numerical studies of a nonlinear model. The
system, described in Section 2 and pictured in Fig. 1, cor-
responds to particles coupled via elastic and dissipative
interactions; in addition, each particle is submitted to an
on-site nonlinear potential, taking into account interac-
tions between different subsystems. For a fixed viscous
parameter γ, we examine the relaxation of energy when,
after thermalization, the ends of the chain are placed in
contact with a zero-temperature reservoir. Results show
different kinds of energy relaxation regime which depend
strongly of the dissipative terms: in particular, we show
that the system can relax very slowly in spite of high dis-
sipative couplings!
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Fig. 1. Sketch of the non-linear dissipative model.

2 The dissipative nonlinear chain

We consider a one dimensional chain of N=200 anhar-
monic oscillators, with a nonlinear on-site potential V(x),
with free ends and nearest-neighbor elastic coupling po-
tential (the coupling being k). The sketch of the chain
is reported in Fig. 1. In order to represent the clamping
degree of freedom, we consider for one half of nearest-
neighbors a dissipative coupling (γ is the dissipative pa-
rameter) in parallel with elastic coupling. For the on-site
potential V(x), describing the interactions between two
sub-units, we have chosen the Morse potential

V(x) =
1

2
[1− e−x]2 (1)

which has the appropriate shape to describe the strong
repulsion when the units are pushed toward each other
(x<0) and the vanishing interaction when the units are
pulled very far apart (x≫1). Each end oscillators of our
chain can be also submitted to an additional damping
force. The equations of motion of this chain are given in
dimensionless form by:

ẍ2i = − ∂V

∂x2i
− k(2x2i − x2i+1 − x2i−1)

−γ(ẋ2i − ẋ2i−1)− γ′ẋ2i δ2i,200 (2)

and

ẍ2i+1 = − ∂V

∂x2i+1
− k(2x2i+1 − x2i − x2i+2)

−γ(ẋ2i+1 − ẋ2i+2)− γ′ẋ2i+1 δi,0 (3)

where xn is the dimensionless displacement of the nth os-
cillator from equilibrium, ẋn its velocity and δ the Kro-
necker delta function. The mass of the oscillators is set to
unity by appropriately renormalizing time units. γ’ corre-
sponds to the damping coefficient of a surrounding heat
bath, described below.

To study energy relaxation, we consider k=0.01 and
we initially thermalize the system at temperature T=1 by
using Nosé-Hoover thermostats [14]. This temperature is
much higher than the critical temperature (Tc=0.2) of the

”order-disorder” transition which characterizes the non
dissipative model γ=0 (for more detail see references [15,
16]). Then, in average, the kinetic energy per site is higher
than the depth of the Morse potential (which is equal to
0.5 in our arbitrary units): we can therefore consider our
system as in an initial ”liquid” state: all the particules
are in the plateau of the Morse potential. In other words,
there are no interaction between units. The thermalization
procedure is performed with γ=γ’=0 by using a chain of
three thermostats to provide a good exploration of the
phase space [14]. The equations of motion have been in-
tegrated using a fourth order Runge-Kutta method with
timestep 0.01.

After thermalization, the connection with the heat bath
is turned off and the lattice is connected to a zero tem-
perature reservoir via the damping term with γ’=0.1. In-
stead, the dissipative parameter γ varied in the interval
[0,100]. The moment of connection with the zero temper-
ature reservoir is chosen as the origin of time. At each step
of the integration of equations (2) and (3), we evaluate the
total lattice energy:

E =

200
∑

i=1

[

1

2
ẋ2i +V(xi)

]

+

199
∑

i=1

k

2
(xi+1 − xi)

2 (4)

and consider the symmetrized local energy per site:

Ei =
1

2
ẋ2i +V(xi) +

k

4
(xi−1 − xi)

2 +
k

4
(xi − xi+1)

2 .

(5)
Total energy is expected to decrease with time and con-
verge to a zero value of the ”frozen” state at equilibrium.

3 Relaxation of the thermalized system

In Fig. 2, we report the total lattice energy divided by the
initial energy versus time for various viscous parameter γ.
For γ=0, a clear non exponential decreasing energy is ob-
served, consistent with Tsironis and Aubry’s results [8].
This long-tail relaxation behavior was shown by these au-
thors to be connected to the presence of long-lived non
linear localized modes that are relatively mobile. If we
consider a small dissipative coupling (γ=10−3) inside the
lattice, we see that total energy decreases faster than pre-
viously. This small dissipative coupling induces a strong
modification of energy relaxation to the ”frozen” state
(normalized energy closed to 0) for a time smaller than
104 (in arbitrary units). This emphasizes that the dissipa-
tive couplings change strongly the relaxation mechanisms
and can induce a fast relaxation regime.

For γ higher than 0.1, a new surprising feature is ob-
served: normalized energy seems to be blocked with a very
slow decrease for long time whereas the dissipative pa-
rameter is higher! The system seems to evolve in a quasi-
stationary state that is neither a ”frozen” state (the nor-
malized energy is clearly different from 0) nor a ”liquid”
state” (energy is too low). We can also notice that, at
a given time, the energy of this quasi-stationary state
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Fig. 2. Normalized total energy decay as function of time for
various viscous parameter γ. Initially each array is in thermal
equilibrium at the temperature T=1.

increases with γ. This situation is reminiscent of poly-
mer systems where very long-lived non-equilibrium aging
states are observed.

In previous relaxation studies in non linear lattices
where blocking energy was observed, it has been shown
that such behavior may be induced by long-lived breathers
[8]. In order to examine more precisely the present situa-
tion, we report in Fig. 3 the spatiotemporal energy land-
scape of the lattice by plotting the local energy Ei in each
lattice site for γ = 10−3, 10−1 and 10. Time advances
along the y axis until t=104 and a gray scale is used to rep-
resent the local energy with darker shading corresponding
to more energetic regions. In the case γ=10−3, Fig. 3c em-
phasizes two kinds of energy relaxation: on the one hand,
there is a dissipation of energy inside the lattice, charac-
terized by a ”fibrous structure” of the local energy land-
scape; on the other hand, we observe a dissipation of mo-
bile breathers via surface damping characterized by ”dark
oblique lines”. For γ ≥0.1, we notice the clear presence of
pinned long-lived breathers, responsible of the energy re-
laxation blocking. This localisation of energy is observed
after a short time where energy not only decreases via
the surface damping but also via a dissipation inside the
lattice (see for example the landscape for γ = 10−1 and
t<2500). Furthermore, these states have a very long lived
time and are still observed for t higher than 105.

Fig. 3. Evolution of the local energy Ei along the chain for
various viscous parameter γ=10 (panel a), 0.1 (panel b) and
0.001 (panel c). The grey scale goes from Ei=0 (white) to the
maximum Ei-value (black).

We have mentioned previously that, at early times,
phonon and mobile breather dissipation takes place before
pinned breathers relaxation. Typically the hierarchy of re-
laxations processes may be classify in a sequence of charac-
teristic times t∗1 <t∗2 <... [17], where the energy relaxation
corresponds approximately to exponential or stretched ex-
ponential decay [18]. Let us introduce the phonon relax-
ation time t∗ defined by E(t∗)/E(0)=0.5 which is char-
acteristic of the phonon and mobile breather dissipation
inside the lattice. We have reported in Fig. 4 the evolution
of this relaxation time versus the viscous parameter γ. We
clearly see, in this first step, that energy decreases faster
for γ between 0.1 and 1. In the case of a linear lattice, the
maximum of dissipation is predicted to correspond to a
value of γ which verifies γω ∼ K+k where K corresponds
to the coupling constant of the linearized Morse potential
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(K=1 in our case) and ω is the frequency of the phonon

band that starts at the frequency
√
K=1 and extends to√

K+ 4k∼1.02. Therefore, in the case of linearized oscil-
lator, we expect a maximum of dissipation for γ close to
1 in agreement with what is reported in Fig. 4. It is thus
surprising to observe quasi-stationary states in a second
regime whereas dissipative effects are important, even the
presence of slow relaxation when the friction is large is
reminiscent of the behavior of damped harmonic oscilla-
tors.

Fig. 4. Phonon relaxation time t∗, defined by E(t∗)/E(0)=0.5,
for various values of the viscous parameter γ.

In Fig. 5, we report the local energy in the lattice for
various parameter γ and at a given time t=2.104 much
higher than the characteristic time of phonons and mobile
breathers dissipation. For γ <0.1, the local energy per site
is close to 0 as seen previously in Fig. 2: the system with
small dissipative coupling reached thus rapidly an equilib-
rium frozen state. For γ ≥0.1, we clearly see the localiza-
tion of energy, as long-lived breathers, corresponding to
two nearest-neighbors oscillators, vibrating in phase, but
distributed evenly on the lattice. We have verified that
the two considered nearest-neighbors are coupled via pis-
ton: when γ is high enough this coupling is clamped. In
fact, the phase displacement of velocities of both particles
is very small, inducing a very slow dissipation and there-
fore a very long-lived out-equilibrium state. The energy of
these long-lived breathers is close to 0.5 at time t=2.104,
and the associated sites are not linked with the on-site
Morse potential. This quasi-stationary state is clearly not
a frozen state, since some parts of a molecular chain are
”hot” but do not interact with other ones.

For t≫t∗ and γ≥0.1, the energy relaxation of the quasi-
stationary state can be very well fitted by a Kohlrausch-
Williams-Watts function or stretched exponential func-
tion:

E(t) = Eb(0)e
−(at)b (6)

Fig. 5. Instantaneous local energy Ei along the chain at time
t=2.104 for various dissipative parameter γ. The dashed lines
show the limit of Morse potential for large displacement xi.

where the coefficients a, b and Eb(0) are γ dependent.
Eb(0) can be qualified as the total energy of pinned brea-
thers at time t=0. The Kohlrausch [19] exponent b is a pa-
rameter measuring the deviation from a single exponential
form (0≤b≤1). In Fig. 6, we have reported the evolution of
-ln[E(t)/Eb(0)] versus t with logarithmic scales for various
parameter γ≥0.1. We see a very clear linear dependance
for high t (after phonon and mobile breather dissipation),
which attests that this long-lived breather energy relaxes
as a stretched exponential.

We see also in these figures that the slope of the straight
lines depends on the viscous parameter γ. In order to ex-
amine more precisely this dependence, we report in Fig. 7
the Kohlrausch exponent b versus the viscous parame-
ter γ. The error bars are shown in the picture, but are
hidden by the symbols, suggesting that the fit is very good.
We clearly see a maximum of the exponent b for values
of γ close to 0.5. The b-value is equal to 0.82 and then the
energy relaxation differs from a pure exponential decay.
Furthermore, this figure shows that the pinned breathers
relaxation is slower for higher parameter γ.
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Fig. 7. Kohlrausch exponent b for various viscous parameter γ.

4 Out of equilibrium dynamic correlations

Studies of nonequilibrium systems like spin, structural or
Lennard-Jones glasses [20,21] have shown that the nonequi-
librium dynamics of the previously described states could
be much efficiently characterized by two-time correlation

functions of the form [26]:

C(tw + t, tw) = 〈A(tw + t)A(tw)〉
−〈A(tw + t)〉〈A(tw)〉 (7)

where A is a microscopic observable, and tw is the ”wait-
ing time” i.e., the time elapsed after the quench. Brack-
ets denote an average over different initial configurations
at temperature T. At equilibrium, this two-time quantity
satisfies time translation invariance and then depends only
on the time t. On the other hand, in out of equilibrium
situations, such equilibrium property is not verified: this
function depends on the waiting time tw (”aging effect”).
The correlations functions for large times are expected to
scale in the form:

C(tw + t, tw) = CST(t) + CAG

(

ξ(tw + t)

ξ(tw)

)

. (8)

The first term describes short time dynamics that does not
depend on tw and has the equilibrium form. The second
term, or aging part, depends only on the ratio ξ(tw+t)/
ξ(tw) where ξ(t) is a monotonous increasing function of
t. In a lot of cases ξ(t)∝ t or ∝ tν so that the aging
part is simply a function of t/tw and exhibits a master
curve (see for instance, experiments on thermoremanent
magnetization [22], gels [23] or particle suspensions [24,
25]).

In this study we have considered the microscopic ob-

servable A(t)=(
∑200

i=1 xi(t))/200 that is the mean deforma-
tion per site of the chain at time t. Numerical calculations
have been done in the case of a quench of the system
with a viscous parameter γ=10 from temperature T=1
to T=0. Two-time correlation functions are obtained for
various waiting time by considering 11 different initial con-
figurations. Furthermore, in order to make a quantitative
comparison, we prefer to calculate correlation normalized
by C(tw,tw).

In Fig. 8, we have reported the evolution of normalized
two-time correlations function C(tw+t,tw) versus time t
for different waiting time (we consider tw≫t∗ in order to
study only long lived non equilibrium states after phonons
and mobile breathers dissipation). The behavior of C clearly
emphasizes the lost of time-translation invariance and the
dependence on the waiting time tw. This figure also shows
that the dynamics can be decomposed into two time scales:

(i) at short time separation (t<20) correlation function
doesn’t depend on tw and is equal to the value expected
at equilibrium (C=1 at T=0).

(ii) the decay from this value toward zero arises in
a second time scale that clearly depends on tw: the sys-
tem does’nt reach equilibrium within the time window ex-
plored in the simulation. Furthermore we can notice that
the larger the waiting time, the longer it takes the system
to forget the configuration at time tw. This behavior is
typical of aging effect [20].

Guided by equation (8) we test the scaling assumption
for long times in Fig. 9, where normalized correlation func-
tions are reported versus normalized time t/tw. The dif-
ferent curves can be superimposed, indicating the validity
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of the scaling ansatz and the existence of a master curve.
This striking feature is observed in many non-equilibrium
systems [22–25] and is very similar with comparable stud-
ies on spin glasses [20] or Lennard-Jones glasses [21]. The
physical origin of this universal t/tw scaling is, at this day,
an open question. Kob and Barrat suggest in reference [21]
that it could be induced by a similarity of the geometry
of phase space of these systems in spite of differences in
microscopic dynamics.
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Finally, we would like to point out that Fig. 8 shows
also the violation of the dissipation-fluctuation theorem
(FDT). It seems to be a characteristic of non-equilibrium
system as observed numerically in domain growth process
[27], Lennard-Jones glasses [28] or slow granular rheol-
ogy [29] and experimentally for dielectric measurements

in colloidal glasses [30], supercooled fluid [31] and polymer
glasses [32,33]. Let us consider the response R(tw+t,tw)
to a field h conjugated to observable A. For systems out-
of-equilibrium, response to an external field is given by
the following equation:

R(tw + t, tw) ≡
δ〈A(tw + t)〉

δh(tw)

∣

∣

∣

∣

h=0

= −χ(C)

T

∂C(tw + t, tw)

∂t
(9)

where χ(C) is a phenomelogical function. We thus obtain:

∂C(tw + t, tw)

∂t
= −T

χ
R(tw + t, tw) (10)

where T is the bath temperature. Obviously, for equili-
brated systems, χ(C) is equal to 1 and the FDT is recov-
ered.

If we consider a quench with a zero-temperature bath,
then for satisfying FDT, the derivative of the normalized
correlation function has to vanish. Just after the quench,
as usual, this requirement would not be fullfilled during
the time for equilibration which is clearly independent of
the waiting time. However, in the present nonlinear dissi-
pative model, evolutions of correlation functions reported
in Fig. 8 show clearly that convergence toward the regime
where the FDT is correct, depends on the waiting time tw.
Consequently FDT is violated in this non-equilibrium sys-
tem as seen in other glasses [27–33]. Moreover, the larger
the waiting time, the longer the FDT is violated by the
system.

5 Conclusion

We have studied a one dimensional nonlinear lattice char-
acterized by dissipative couplings. The energy relaxation
studies of this thermalized system show that for suffi-
ciently large viscous parameter γ, it is possible to observe
nonequilibrium quasi-stationary states in spite of the short
characteristic time of phonon dissipation! This surpris-
ing behavior is due to a chain auto-organisation which
minimizes energy dissipation, inducing the clamping of
some degrees of freedom and forming long-lived pinned
breathers.

Moreover, this very slow energy relaxation can be fit-
ted by stretched exponential laws, ubiquitous in glassy
polymer aging properties. Another similarity with these
physical systems is that this aging phenomenon is slower
when the viscous parameter γ is higher. Furthermore, the
two-time correlation function C(tw+t,tw) shows a strong
dependence on the waiting time and can be scaled onto a
master curve by considering the evolution versus normal-
ized time t/tw.

By these aspects (clamping of degree of freedom, long-
lived nonequilibrium state, stretched exponential decays,
violation of time-translation invariance and master curve),
the aging nature of this simple dissipative non linear lat-
tice is very similar to those observed in glassy polymers.
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Beside its interest for nonlinear physics, this model is
presumably an alternative to study complex systems like
glassy state polymers: we have now to push our inves-
tigations further by examining other properties like de-
pendences on cycling temperature, evolution with waiting
time of the elastic moduli.
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