4 research outputs found

    Shear velocity structure of the Northland Peninsula, New Zealand, inferred from ambient noise correlations

    No full text
    Ambient noise correlation has been successfully applied in several cases to regions with dense seismic networks whose geometries are well suited to tomographic imaging. The utility of ambient noise correlation-based methods of seismic imaging where either network or noise field characteristics are less ideal has yet to be fully demonstrated. In this study, we focus on the Northland Peninsula of New Zealand using data from five seismographs deployed in a linear pattern parallel to the direction from which most of the ambient noise arrives. Shear wave velocity profiles computed from Rayleigh and Love wave dispersion curves using the Neighborhood Algorithm are in good agreement with the results of a previous active source refraction experiment and a teleseismic receiver function and surface wave analysis. In particular, we compute a path-averaged Moho depth of ̃28 km along a ̃250 km profile. The use of both Rayleigh and Love wave measurements enables us to estimate the degree of radial anisotropy in the crust, yielding values of 2-15%. These results demonstrate that ambient noise correlation methods provide useful geophysical constraints on lithospheric structure even for nonoptimal network geometries and noise field characteristics. © 2010 by the American Geophysical Union

    Mapping Stress and Structure From Subducting Slab to Magmatic Rift: Crustal Seismic Anisotropy of the North Island, New Zealand

    No full text
    © 2019. American Geophysical Union. All Rights Reserved. We use crustal seismic anisotropy measurements in the North Island, New Zealand, to examine structures and stress within the Taupō Volcanic Zone, the Taranaki Volcanic Lineament, the subducting Hikurangi slab, and the Hikurangi forearc. Results in the Taranaki region are consistent with NW-SE oriented extension yet suggest that the Taranaki volcanic lineament may be controlled by a deep-rooted, inherited crustal structure. In the central Taupō Volcanic Zone anisotropy fast orientations are predominantly controlled by continental rifting. However at Taupō and Okataina volcanoes, fast orientations are highly variable and radial to the calderas suggesting the influence of magma reservoirs in the seismogenic crust (≤15 km depth). The subducting Hikurangi slab has a predominant trench-parallel fast orientation, reflecting the pervasive presence of plate-bending faults, yet changing orientations at depths ≥120 km beneath the central North Island may be relics from previous subduction configurations. Finally, results from the southern Hikurangi forearc show that the orientation of stresses there is consistent with those in the underlying subducting slab. In contrast, the northern Hikurangi forearc is pervasively fractured and is undergoing E-W compression, oblique to the stress field in the subducting slab. The north-south variation in fore-arc stress is likely related to differing subduction-interface coupling. Across the varying tectonic regimes of the North Island our study highlights that large-scale tectonic forces tend to dictate the orientation of stress and structures within the crust, although more localized features (plate coupling, magma reservoirs, and inherited crustal structures) can strongly influence surface magmatism and the crustal stress field

    Structural heterogeneity of the midcrust adjacent to the central Alpine Fault, New Zealand: Inferences from seismic tomography and seismicity between Harihari and Ross

    No full text
    © 2015. American Geophysical Union. All Rights Reserved. Determining the rates and distributions of microseismicity near major faults at different points in the seismic cycle is a crucial step toward understanding plate boundary seismogenesis. We analyze data from temporary seismic arrays spanning the central section of the Alpine Fault, New Zealand, using double-difference seismic tomography. This portion of the fault last ruptured in a large earthquake in 1717 AD and is now late in its typical 330 year cycle of Mw∼8 earthquakes. Seismicity varies systematically with distance from the Alpine Fault: (1) directly beneath the fault trace, earthquakes are sparse and largely confined to the footwall at depths of 4-11 km; (2) at distances of 0-9 km southeast of the trace, seismicity is similarly sparse and shallower than 8 km; (3) at distances of 9-20 km southeast of the fault trace, earthquakes are much more prevalent and shallower than 7 km. Hypocenter lineations here are subparallel to faults mapped near the Main Divide of the Southern Alps, confirming that those faults are active. The region of enhanced seismicity is associated with the highest topography and a high-velocity tongue doming at 3-5 km depth. The low-seismicity zone adjacent to the Alpine Fault trace is associated with Vp and Vs values at midcrustal depths about 8 and 6% lower than further southeast. We interpret lateral variations in seismicity rate to reflect patterns of horizontal strain rate superimposed on heterogeneous crustal structure, and the variations in seismicity cutoff depth to be controlled by temperature and permeability structure variations. Key Points: Seismicity is sparse near the Alpine Fault late in its typical seismic cycle Seismicity rates increase abruptly 9 km southeast of the fault trace This transition coincides with a strain rate peak and lateral velocity gradient

    Microseismicity and P–wave tomography of the central Alpine Fault, New Zealand

    No full text
    <p>We utilise seismic data from the central section of the Alpine Fault to locate earthquakes and image crustal structure in three dimensions. Tomography results from c. 6500 sources reveal the fault as either a southeast-dipping low-velocity zone or a marked velocity contrast in different parts of the study region. Where our model is best resolved, we interpret the Alpine Fault to be listric in nature, dipping steeply in the upper crust (50–60°) and flattening to 25–30° in the lower crust. The base of the seismogenic zone shallows from c. 15 km beneath the footwall and Alpine Fault to c. 6 km beneath the Southern Alps Main Divide, and then deepens to c. 15 km by c. 10 km further southeast. The shallow brittle–ductile transition overlies a broad low-velocity zone, which together likely result from the presence of fluids and elevated temperatures brought about by enhanced exhumation rate in this section of the Alpine Fault.</p
    corecore