634 research outputs found

    A Rare Presentation of Mycosis Fungoides Mimicking Psoriasis Vulgaris

    Get PDF
    Mycosis fungoides (MF) is an uncommon primary cutaneous lymphoma with a wide spectrum of clinicopathological manifestations. Diagnosis can be difficult in its early stages given the considerable overlap with more common benign dermatoses. We report an unusual case of MF in a 52-year-old male presenting with psoriasiform plaques on the palms and the soles who rapidly developed additional lesions on the scalp, limps and trunk. Punch biopsy of the face was obtained for routine histology and immunohistochemical stains. Chest X-ray, total body computed tomography scanning and excisional biopsy of the inguinal lymph node were performed. Review of the face biopsy revealed a diffuse dermal infiltrate containing a high number of atypical lymphocytes showing a CD3+, CD4+, CD45RO+, CD8–, CD20– immunophenotype and epidermotropism. Findings were consistent with tumor stage MF (stage IIB, T3 N1 M0). We report a rare presentation of MF mimicking psoriasis vulgaris

    Neurophysiological Profile of Antismoking Campaigns

    Get PDF
    Over the past few decades, antismoking public service announcements (PSAs) have been used by governments to promote healthy behaviours in citizens, for instance, against drinking before the drive and against smoke. Effectiveness of such PSAs has been suggested especially for young persons. By now, PSAs efficacy is still mainly assessed through traditional methods (questionnaires and metrics) and could be performed only after the PSAs broadcasting, leading to waste of economic resources and time in the case of Ineffective PSAs. One possible countermeasure to such ineffective use of PSAs could be promoted by the evaluation of the cerebral reaction to the PSA of particular segments of population (e.g., old, young, and heavy smokers). In addition, it is crucial to gather such cerebral activity in front of PSAs that have been assessed to be effective against smoke (Effective PSAs), comparing results to the cerebral reactions to PSAs that have been certified to be not effective (Ineffective PSAs). &e eventual differences between the cerebral responses toward the two PSA groups will provide crucial information about the possible outcome of new PSAs before to its broadcasting. &is study focused on adult population, by investigating the cerebral reaction to the vision of different PSA images, which have already been shown to be Effective and Ineffective for the promotion of an antismoking behaviour. Results showed how variables as gender and smoking habits can influence the perception of PSA images, and how different communication styles of the antismoking campaigns could facilitate the comprehension of PSA’s message and then enhance the related impac

    Recognition of Intentional Violations of Active Constraints in Cooperative Manipulation Tasks

    Get PDF
    Active Constraints (ACs) are high-level control algorithms deployed to assist a human operator in man-machine cooperative tasks [1], and define regions within which it is safe for the robot to move and cut [2]. To enhance the performance in cooperative surgical tasks, adaptive constraints have been exploited to optimally adjust the provided level of assistance according to some knowledge of the task, hardware or user. In [3] Hidden Markov Models were used for the run-time detection of the user intention to leave a guidance constraint to circumvent an obstacle. In this work, we present a novel, Neural Network (NN)-based method for the runtime classification of intentional and unintentional violations of ACs, that is trained on either statistical or frequency features from the enforced constraint forces. We investigate which set of parameters yield faster and more reliable classification results, both for guidance and regional constraints

    Nafion-TiO2 composite DMFC membranes: Physico-chemical properties of the filier versus electrochemical performance

    Get PDF
    TiO2 nanometric powders were prepared via a sol-gel procedure and calcined at various temperatures to obtain different surface and bulk properties. The calcined powders were used as fillers in composite Nafion membranes for application in high temperature direct methanol fuel cells (DMFCs). The powder physico-chemical properties were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and pH measurements. The observed characteristics were correlated to the DMFC electrochemical behaviour. Analysis of the high temperature conductivity and DMFC performance reveals a significant influence of the surface characteristics of the ceramic oxide, such as oxygen functional groups and surface area, on the membrane electrochemical behaviour. A maximum DMFC power density of 350 mW cm-2 was achieved under oxygen feed at 145°C in a pressurized DMFC (2.5 bar, anode and cathode) equipped with TiO2 nano-particles based composite membranes. © 2004 Elsevier Ltd. All rights reserved

    Multivariate model for cooperation: bridging Social Physiological Compliance and Hyperscanning

    Get PDF
    The neurophysiological analysis of cooperation has evolved over the past 20 years, moving towards the research of common patterns in neurophysiological signals of people interacting. Social Physiological Compliance (SPC) and Hyperscanning represent two frameworks for the joint analysis of autonomic and brain signals respectively. Each of the two approaches allows to know about a single layer of cooperation according to the nature of these signals: SPC provides information mainly related to emotions, and Hyperscanning that related to cognitive aspects. In this work, after the analysis of the state of the art of SPC and Hyperscanning, we explored the possibility to unify the two approaches creating a complete neurophysiological model for cooperation considering both affective and cognitive mechanisms. We synchronously recorded electrodermal activity, cardiac and brain signals of 14 cooperative dyads. Time series from these signals were extracted and Multivariate Granger Causality was computed. The results showed that only when subjects in a dyad cooperate there is a statistically significant causality between the multivariate variables representing each subject. Moreover, the entity of this statistical relationship correlates with the dyad's performance. Finally, given the novelty of this approach and its exploratory nature, we provided its strengths and limitations

    Durability of a recombination catalyst-based membrane-electrode assembly for electrolysis operation at high current density

    Get PDF
    Hydrogen production through polymer electrolyte membrane water electrolysis was investigated at high current density (4 A cm-2). A PtCo recombination catalyst-based membrane-electrode assembly (MEA) was assessed in terms of performance, efficiency and durability. The electrolysis cell consisted of a thin (50 µm) perfluorosulfonic acid membrane and low platinum group metals (PGM) catalyst loadings (0.6 mgMEA PGM cm-2). An unsupported PtCo catalyst was successfully integrated in the anode. A composite catalytic layer made of IrRuOx and PtCo assisted both oxygen evolution and oxidation of hydrogen permeated through the membrane. The cell voltage for the recombination catalyst-based MEA was about 30 mV lower than the bare MEA during a 3500 h durability test. The modified MEA showed low performance losses during 3500 hours operation at high current density (4 A cm-2) with low catalyst loadings. A decay rate of 9 µV/h was observed in the last 1000 hours. These results are promising for decreasing the capital costs of polymer electrolyte membrane electrolysers. Moreover, the stable voltage efficiency of about 80% vs. the high heating value (HHV) of hydrogen at 4 A cm-2, here achieved, appears very promising to decrease operating expenditures

    The cosmology dependence of the concentration-mass-redshift relation

    Full text link
    The concentrations of dark matter haloes provide crucial information about their internal structure and how it depends on mass and redshift -- the so-called concentration-mass-redshift relation, denoted c(M,z)c(M,z). We present here an extensive study of the cosmology-dependence of c(M,z)c(M,z) that is based on a suite of 72 gravity-only, full N-body simulations in which the following cosmological parameters were varied: σ8\sigma_{8}, ΩM\Omega_{\mathrm{M}}, Ωb\Omega_{\mathrm{b}}, nsn_{\mathrm{s}}, hh, MνM_{\nu}, w0w_{0} and waw_{\mathrm{a}}. We characterize the impact of these parameters on concentrations for different halo masses and redshifts. In agreement with previous works, and for all cosmologies studied, we find that there exists a tight correlation between the characteristic densities of dark matter haloes within their scale radii, r2r_{-2}, and the critical density of the Universe at a suitably defined formation time. This finding, when combined with excursion set modelling of halo formation histories, allows us to accurately predict the concentrations of dark matter haloes as a function of mass, redshift, and cosmology. We use our simulations to test the reliability of a number of published models for predicting halo concentration and highlight when they succeed or fail to reproduce the cosmological c(M,z)c(M,z) relation.Comment: 11 pages, 9 figure

    Synthesis, Characterization and Electrocatalytic Activity of Bi- and Tri-metallic Pt-Based Anode Catalysts for Direct Ethanol Fuel Cells

    Get PDF
    Three Pt-based anode catalysts supported on Vulcan XC-72R (VC) were prepared by using a modified polyol process. These materials were characterized and tested by X-Ray Diffraction (XRD), X-Ray Fluorescence (XRF) and Transmission Electron Microscopy (TEM). XRD and TEM analysis indicated that especially the ternary anode catalysts consisted of uniform nanosized particles with sharp distribution. The Pt lattice parameter was smaller, in the ternary PtSnIr catalyst whereas it increased with the addition of Sn and Rh, in the corresponding binary and ternary catalysts. Cyclic voltammetry (CV) measurements showed that Sn, Ir and Rh may act as promoter of Pt enhancing ethanol electro-oxidation activity. It was found that the direct ethanol fuel cell (DEFC) performances were significantly improved with these modified anode catalysts. This effect on the DEFC performance is attributed to the so-called bi-tri-functional mechanism and to the electronic interaction between Pt and additives. The performance increased significantly with the temperature. However, it was also possible to observe some decay with time for all catalysts due to the formation of surface poisons, probably consisting in CO-like species. At 60 °C, the PtSnIr catalyst showed the best performance, as a result of a proper morphology and promoting effectFil: D'Urso, C.. Centro Nazionale della Ricerca. ITAE; ItaliaFil: Bonesi, Alejandro Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Triaca, Walter Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Castro Luna Berenguer, Ana Maria del Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Baglio, V.. Centro Nazionale della Ricerca. ITAE; Italia; ItaliaFil: Aricò, A. S.. Centro Nazionale della Ricerca. ITAE; Italia; Itali
    corecore