67 research outputs found

    The use of near infrared (NIR) spectroscopy to improve soil mapping at the farm scale

    Get PDF
    The creation of fine resolution soil maps is hampered by the increasing costs associated with conventional laboratory analyses of soil. In this study, near infrared (NIR) reflectance spectroscopy was used to reduce the number of conventional soil analyses required by the use of calibration models at the farm scale. Soil electrical conductivity and mid infrared (MIR) reflection from a satellite image were used and compared as ancillary data to guide the targeting of soil sampling. About 150 targeted samples were taken over a 97 hectare farm (approximately 1.5 samples per hectare) for each type of ancillary data. A sub-set of 25 samples was selected from each of the targeted data sets (150 points) to measure clay and soil organic matter (SOM) contents for calibration with NIR. For the remaining 125 samples only their NIR-spectra needed to be determined. The NIR calibration models for both SOM and clay contents resulted in predictions with small errors. Maps derived from the calibrated data were compared with a map based on 0.5 samples per hectare representing a conventional farm-scale soil map. The maps derived from the NIR-calibrated data are promising, and the potential for developing a cost-effective strategy to map soil from NIR-calibrated data at the farm-scale is considerable

    Perspectives on validation in digital soil mapping of continuous attributes—A review

    Get PDF
    We performed a systematic mapping of validation methods used in digital soil mapping (DSM), in order to gain an overview of current practices and make recommendations for future publications on DSM studies. A systematic search and screening procedure, largely following the RepOrting standards for Systematic Evidence Syntheses (ROSES) protocol, was carried out. It yielded a database of 188 peer-reviewed DSM studies from the past two decades, all written in English and all presenting a raster map of a continuous soil property. Review of the full-texts showed that most publications (97%) included some type of map validation, while just over one-third (35%) estimated map uncertainty. Most commonly, a combination of multiple (existing) soil sampe datasets was used and the resulting maps were validated by single data-splitting or cross-validation. It was common for essential information to be lacking in method descriptions. This is unfortunate, as lack of information on sampling design (missing in 25% of 188 studies) and sample support (missing in 45% of 188 studies) makes it difficult to interpret what derived validation metrics represent, compromising their usefulness. Therefore, we present a list of method details that should be provided in DSM studies. We also provide a detailed summary of the 28 validation metrics used in published DSM studies, how to interpret the values obtained and whether the metrics can be compared between datasets or soil attributes

    Urbanization causes biotic homogenization of woodland bird communities at multiple spatial scales

    Get PDF
    Abstract Urbanization is a major contributor to biodiversity declines. However, studies assessing effects of urban landscapes per se (i.e., disentangled from focal habitat effects) on biodiversity across spatial scales are lacking. Understanding such scale-dependent effects is fundamental to preserve habitats along an urbanization gradient in a way that maximizes overall biodiversity. We investigated the impact of landscape urbanization on communities of woodland-breeding bird species in individual (local scale) and across multiple (regional scale) cities, while controlling for the quality of sampled habitats (woodlands). We conducted bird point counts and habitat quality mapping of trees, dead wood and shrubs in 459 woodlands along an urban to rural urbanization gradient in 32 cities in Sweden. Responses to urbanization were measured as local and regional total diversity (?), average site diversity (α) and diversity between sites (?). We also assessed effects on individual species and to what extent dissimilarities in species composition along the urbanization gradient were driven by species nestedness or turnover. We found that landscape urbanization had a negative impact on ?-, α- and ?-diversity irrespective of spatial scale, both regarding all woodland-breeding species and red-listed species. At the regional scale, dissimilarities in species composition between urbanization levels were due to nestedness, i.e., species were lost with increased landscape urbanization without being replaced. In contrast, dissimilarities at the local scale were mostly due to species turnover. Because there was no difference in habitat quality among woodlands across the urbanization gradient, we conclude that landscape urbanization as such systematically causes poorer and more homogeneous bird communities in adjacent natural habitats. However, the high local turnover and the fact that several species benefited from urbanization demonstrates that natural habitats along the entire urbanization gradient are needed to maintain maximally diverse local bird communities.Urbanization is a major contributor to biodiversity declines. However, studies assessing effects of urban landscapes per se (i.e., disentangled from focal habitat effects) on biodiversity across spatial scales are lacking. Understanding such scale-dependent effects is fundamental to preserve habitats along an urbanization gradient in a way that maximizes overall biodiversity. We investigated the impact of landscape urbanization on communities of woodland-breeding bird species in individual (local scale) and across multiple (regional scale) cities, while controlling for the quality of sampled habitats (woodlands). We conducted bird point counts and habitat quality mapping of trees, dead wood, and shrubs in 459 woodlands along an urban to rural urbanization gradient in 32 cities in Sweden. Responses to urbanization were measured as local and regional total diversity (gamma), average site diversity (alpha), and diversity between sites (beta). We also assessed effects on individual species and to what extent dissimilarities in species composition along the urbanization gradient were driven by species nestedness or turnover. We found that landscape urbanization had a negative impact on gamma-, alpha-, and beta-diversity irrespective of spatial scale, both regarding all woodland-breeding species and red-listed species. At the regional scale, dissimilarities in species composition between urbanization levels were due to nestedness, that is, species were lost with increased landscape urbanization without being replaced. In contrast, dissimilarities at the local scale were mostly due to species turnover. Because there was no difference in habitat quality among woodlands across the urbanization gradient, we conclude that landscape urbanization as such systematically causes poorer and more homogeneous bird communities in adjacent natural habitats. However, the high local turnover and the fact that several species benefited from urbanization demonstrates that natural habitats along the entire urbanization gradient are needed to maintain maximally diverse local bird communities.Peer reviewe

    Urbanization causes biotic homogenization of woodland bird communities at multiple spatial scales

    Get PDF
    Urbanization is a major contributor to biodiversity declines. However, studies assessing effects of urban landscapes per se (i.e., disentangled from focal habitat effects) on biodiversity across spatial scales are lacking. Understanding such scale-dependent effects is fundamental to preserve habitats along an urbanization gradient in a way that maximizes overall biodiversity. We investigated the impact of landscape urbanization on communities of woodland-breeding bird species in individual (local scale) and across multiple (regional scale) cities, while controlling for the quality of sampled habitats (woodlands). We conducted bird point counts and habitat quality mapping of trees, dead wood, and shrubs in 459 woodlands along an urban to rural urbanization gradient in 32 cities in Sweden. Responses to urbanization were measured as local and regional total diversity (gamma), average site diversity (alpha), and diversity between sites (beta). We also assessed effects on individual species and to what extent dissimilarities in species composition along the urbanization gradient were driven by species nestedness or turnover. We found that landscape urbanization had a negative impact on gamma-, alpha-, and beta-diversity irrespective of spatial scale, both regarding all woodland-breeding species and red-listed species. At the regional scale, dissimilarities in species composition between urbanization levels were due to nestedness, that is, species were lost with increased landscape urbanization without being replaced. In contrast, dissimilarities at the local scale were mostly due to species turnover. Because there was no difference in habitat quality among woodlands across the urbanization gradient, we conclude that landscape urbanization as such systematically causes poorer and more homogeneous bird communities in adjacent natural habitats. However, the high local turnover and the fact that several species benefited from urbanization demonstrates that natural habitats along the entire urbanization gradient are needed to maintain maximally diverse local bird communities

    Beneficial effects of a Paleolithic diet on cardiovascular risk factors in type 2 diabetes: a randomized cross-over pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our aim was to compare the effects of a Paleolithic ('Old Stone Age') diet and a diabetes diet as generally recommended on risk factors for cardiovascular disease in patients with type 2 diabetes not treated with insulin.</p> <p>Methods</p> <p>In a randomized cross-over study, 13 patients with type 2 diabetes, 3 women and 10 men, were instructed to eat a Paleolithic diet based on lean meat, fish, fruits, vegetables, root vegetables, eggs and nuts; and a Diabetes diet designed in accordance with dietary guidelines during two consecutive 3-month periods. Outcome variables included changes in weight, waist circumference, serum lipids, C-reactive protein, blood pressure, glycated haemoglobin (HbA1c), and areas under the curve for plasma glucose and plasma insulin in the 75 g oral glucose tolerance test. Dietary intake was evaluated by use of 4-day weighed food records.</p> <p>Results</p> <p>Study participants had on average a diabetes duration of 9 years, a mean HbA1c of 6,6% units by Mono-S standard and were usually treated with metformin alone (3 subjects) or metformin in combination with a sulfonylurea (3 subjects) or a thiazolidinedione (3 subjects). Mean average dose of metformin was 1031 mg per day. Compared to the diabetes diet, the Paleolithic diet resulted in lower mean values of HbA1c (-0.4% units, <it>p </it>= 0.01), triacylglycerol (-0.4 mmol/L, <it>p </it>= 0.003), diastolic blood pressure (-4 mmHg, <it>p </it>= 0.03), weight (-3 kg, <it>p </it>= 0.01), BMI (-1 kg/m<sup>2</sup>, <it>p </it>= 0.04) and waist circumference (-4 cm, <it>p </it>= 0.02), and higher mean values of high density lipoprotein cholesterol (+0.08 mmol/L, <it>p </it>= 0.03). The Paleolithic diet was mainly lower in cereals and dairy products, and higher in fruits, vegetables, meat and eggs, as compared with the Diabetes diet. Further, the Paleolithic diet was lower in total energy, energy density, carbohydrate, dietary glycemic load, saturated fatty acids and calcium, and higher in unsaturated fatty acids, dietary cholesterol and several vitamins. Dietary GI was slightly lower in the Paleolithic diet (GI = 50) than in the Diabetic diet (GI = 55).</p> <p>Conclusion</p> <p>Over a 3-month study period, a Paleolithic diet improved glycemic control and several cardiovascular risk factors compared to a Diabetes diet in patients with type 2 diabetes.</p> <p>Trial registration</p> <p>ClinicalTrials.gov NCT00435240.</p

    Low-cost exercise interventions improve long-term cardiometabolic health independently of a family history of type 2 diabetes : a randomized parallel group trial

    Get PDF
    Introduction To investigate the effect of an exercise prescription and a 1-year supervised exercise intervention, and the modifying effect of the family history of type 2 diabetes (FH), on long-term cardiometabolic health. Research design and methods For this prospective randomized trial, we recruited non-diabetic participants with poor fitness (n=1072, 30-70 years). Participants were randomly assigned with stratification for FH either in the exercise prescription group (PG, n=144) or the supervised exercise group (EG, n=146) group and compared with a matched control group from the same population study (CON, n=782). The PG and EG received exercise prescriptions. In addition, the EG attended supervised exercise sessions two times a week for 60 min for 12 months. Cardiometabolic risk factors were measured at baseline, 1 year, 5 years, and 6 years. The CON group received no intervention and was measured at baseline and 6 years. Results The EG reduced their body weight, waist circumference, diastolic blood pressure, and low-density lipoprotein-cholesterol (LDL-C) but not physical fitness (p=0.074) or insulin or glucose regulation (p>0.1) compared with the PG at 1 year and 5 years (p Conclusions Low-cost physical activity programs have long-term beneficial effects on cardiometabolic health regardless of the FH of diabetes. Given the feasibility and low cost of these programs, they should be advocated to promote cardiometabolic health.Peer reviewe

    Changes in AMBIO policies

    No full text

    Steps toward making a journal more relevant

    No full text
    • …
    corecore