6 research outputs found

    Selective Intracellular Delivery of Ganglioside GM3-Binding Peptide through Caveolae/Raft-Mediated Endocytosis

    No full text
    Glycosphingolipids are major components of the membrane raft, and several kinds of viruses and bacterial toxins are known to bind to glycosphingolipids in the membrane raft. Since the viral genes and pathogenic proteins that are taken into cells are directly delivered to their target organelles, caveolae/raft-mediated endocytosis represents a promising pathway for specific delivery. In the present study, we demonstrated the ability of an artificial pentadecapeptide, which binds to ganglioside GM3, to deliver protein into cells by caveolae/raft-mediated endocytosis. The cellular uptake of a biotinylated GM3-binding peptide (GM3BP)–avidin complex into HeLa cells was observed, and the cellular uptake of this complex was inhibited by an incubation with sialic acid or endocytic inhibitors such as methyl-ß-cyclodextrin, and also by an incubation at 4 °C. These results indicate that the GM3BP-avidin complex bind to GM3 in membrane raft, and are taken into cell through caveolae/raft-mediated endocytosis. The GM3BP-avidin complex was transported into cells and localized around the nucleus more slowly than a human immunodeficiency virus type 1 TAT peptide. Furthermore, the uptake of a green fluorescent protein (GFP) linked with GM3BP into HeLa cells was similar to that of the GM3BP–avidin complex, and the localization of the GM3BP-GFP fusion protein was markedly different with that of the TAT-GFP fusion protein. The uptake and trafficking of GM3BP were distinguished from conventional cell-penetrating peptides. GM3BP has potential as a novel peptide for the selective delivery of therapeutic proteins and materials into cells in addition to being a cell-penetrating peptide

    Additional file 2: Figure S1. of Genetic and epigenetic stability of oligodendrogliomas at recurrence

    No full text
    Histopathological features of primary and recurrent tumors in a 34 year-old female (patient 6). The primary tumor was diagnosed as anaplastic oligodendroglioma (WHO grade III) (A). Postoperatively, the patient was treated with 8 courses of PAV chemotherapy. Eight years after the initial surgery, an MRI FLAIR-high lesion was noticeably enlarged and this region showed high uptake in Methionine PET. Tumor recurrence was therefore suspected and surgical resection was performed. In the recurrent tumor, atypia of the nucleus was improved and numbers of mitotic cells were decreased compared to the primary tumor, and the tumor was diagnosed as oligodendroglioma (WHO grade II) (B). Formalin-fixed paraffin-embedded tissues were sectioned and stained with Hematoxylin and Eosin (bar = 100 μm). Figure S2. Histopathological features of different tumor portions from the same patient as listed in Additional file 1: Table S1. Formalin-fixed paraffin-embedded tissues were sectioned and stained with Hematoxylin and Eosin (bar = 100 μm). A. Patient 13, Methionine PET low uptake, grade II; B. Patient 13, Methionine PET high uptake, grade III; C. Patient 14, Gadolinium enhanced -, grade II; D. Patient 14, Gadolinium enhanced +, grade III; E. Patient 15, Methionine PET low uptake, grade II; F. Patient 15, Methionine PET high uptake, grade II; G. Patient 16, Methionine PET low uptake, grade III; H. Patient 16, Methionine PET high uptake, grade III. (PPTX 1597 kb

    Additional file 2: Table S1. of A combination of TERT promoter mutation and MGMT methylation status predicts clinically relevant subgroups of newly diagnosed glioblastomas

    No full text
    Molecular and clinical characteristics of Cohort 1 (n = 758). Table S2. Molecular and clinical characteristics of GBM cohort (n = 453). Table S3. Univariate and multivariate Cox regression analyses for Group A (IDH mutated-TERT mutated) tumors in Cohort 1 (n = 155). Table S4. Univariate and multivariate Cox regression analyses for Group B (IDH mutated-TERT wild-type) tumors in Cohort 1 (n = 131). Table S5. Univariate and multivariate Cox regression analyses for Group C (IDH wild-type-TERT wild-type) tumors in Cohort 1 (n = 237). Table S6. Univariate and multivariate Cox regression analyses for Group D (IDH wild-type-TERT mutated) tumors in Cohort 1 (n = 235). Table S7. Univariate and multivariate Cox regression analyses for GBM in Cohort 1 (n = 260). Table S8. Univariate and multivariate Cox regression analyses for GBM in Cohort 2 (n = 193). Table S9. Background of combined GBM cohort stratified by TERT and MGMT status (n = 453). Table S10. Survival time and WHO grade in each molecular subgroup of Cohort 1 (n = 758). (XLSX 254 kb

    Additional file 1: of A combination of TERT promoter mutation and MGMT methylation status predicts clinically relevant subgroups of newly diagnosed glioblastomas

    No full text
    Supplementary Information. (DOCX 141 kb

    Additional file 3: Figure S1. of A combination of TERT promoter mutation and MGMT methylation status predicts clinically relevant subgroups of newly diagnosed glioblastomas

    No full text
    Distributions of molecular alterations according to histology in Cohort 1. Figure S2. Kaplan-Meier analysis for Group A cases stratified by 1p/19q status. Figure S3. Kaplan-Meier analyses for GBM cases in Cohorts 1 and 2. (PPTX 172 kb
    corecore