1,728 research outputs found
Compressed sensing imaging techniques for radio interferometry
Radio interferometry probes astrophysical signals through incomplete and
noisy Fourier measurements. The theory of compressed sensing demonstrates that
such measurements may actually suffice for accurate reconstruction of sparse or
compressible signals. We propose new generic imaging techniques based on convex
optimization for global minimization problems defined in this context. The
versatility of the framework notably allows introduction of specific prior
information on the signals, which offers the possibility of significant
improvements of reconstruction relative to the standard local matching pursuit
algorithm CLEAN used in radio astronomy. We illustrate the potential of the
approach by studying reconstruction performances on simulations of two
different kinds of signals observed with very generic interferometric
configurations. The first kind is an intensity field of compact astrophysical
objects. The second kind is the imprint of cosmic strings in the temperature
field of the cosmic microwave background radiation, of particular interest for
cosmology.Comment: 10 pages, 1 figure. Version 2 matches version accepted for
publication in MNRAS. Changes includes: writing corrections, clarifications
of arguments, figure update, and a new subsection 4.1 commenting on the exact
compliance of radio interferometric measurements with compressed sensin
Is attending a mental process?
The nature of attention has been the topic of a lively research programme in psychology for over a century. But there is widespread agreement that none of the theories on offer manage to fully capture the nature of attention. Recently, philosophers have become interested in the debate again after a prolonged period of neglect. This paper contributes to the project of explaining the nature of attention. It starts off by critically examining Christopher Mole’s prominent “adverbial” account of attention, which traces the failure of extant psychological theories to their assumption that attending is a kind of process. It then defends an alternative, process-based view of the metaphysics of attention, on which attention is understood as an activity and not, as psychologists seem to implicitly assume, an accomplishment. The entrenched distinction between accomplishments and activities is shown to shed new light on the metaphysics of attention. It also provides a novel diagnosis of the empirical state of play
Economics, Agency, and Causal Explanation
The paper considers three questions. First, what is the connection between economics and agency? It is argued that causation and explanation in economics fundamentally depend on agency. So a philosophical understanding of economic explanation must be sensitive to an understanding of agency. Second, what is the connection between agency and causation? A causal view of agency-involving explanation is defended against a number of arguments from the resurgent noncausalist tradition in the literature on agency and action-explanation. If agency is fundamental to economic explanation, it is argued, then so is causation. Third, what is the connection between causal explanation and the natural sciences? It is argued that, though the explanations given in economics and other social sciences are causal explanations, they are different in kind from the causal explanations of the natural sciences. On the one hand, then, the causal explanations of the social sciences are irreducible to those found in the natural sciences. On the other hand, the causal relations described by the social sciences are not completely autonomous; they do not float free of, or operate independently from, the causal relations charted by the natural sciences
The 74MHz System on the Very Large Array
The Naval Research Laboratory and the National Radio Astronomy Observatory
completed implementation of a low frequency capability on the VLA at 73.8 MHz
in 1998. This frequency band offers unprecedented sensitivity (~25 mJy/beam)
and resolution (~25 arcsec) for low-frequency observations. We review the
hardware, the calibration and imaging strategies, comparing them to those at
higher frequencies, including aspects of interference excision and wide-field
imaging. Ionospheric phase fluctuations pose the major difficulty in
calibrating the array. Over restricted fields of view or at times of extremely
quiescent ionospheric ``weather'', an angle-invariant calibration strategy can
be used. In this approach a single phase correction is devised for each
antenna, typically via self-calibration. Over larger fields of view or at times
of more normal ionospheric ``weather'' when the ionospheric isoplanatic patch
size is smaller than the field of view, we adopt a field-based strategy in
which the phase correction depends upon location within the field of view. This
second calibration strategy was implemented by modeling the ionosphere above
the array using Zernike polynomials. Images of 3C sources of moderate strength
are provided as examples of routine, angle-invariant calibration and imaging.
Flux density measurements indicate that the 74 MHz flux scale at the VLA is
stable to a few percent, and tied to the Baars et al. value of Cygnus A at the
5 percent level. We also present an example of a wide-field image, devoid of
bright objects and containing hundreds of weaker sources, constructed from the
field-based calibration. We close with a summary of lessons the 74 MHz system
offers as a model for new and developing low-frequency telescopes. (Abridged)Comment: 73 pages, 46 jpeg figures, to appear in ApJ
Recommended from our members
Managing digital coordination of design: emerging hybrid practices in an institutionalized project setting
What happens when digital coordination practices are introduced into the institutionalized setting of an engineering project? This question is addressed through an interpretive study that examines how a shared digital model becomes used in the late design stages of a major station refurbishment project. The paper contributes by mobilizing the idea of ‘hybrid practices’ to understand the diverse patterns of activity that emerge to manage digital coordination of design. It articulates how engineering and architecture professions develop different relationships with the shared model; the design team negotiates paper-based practices across organizational boundaries; and diverse practitioners probe the potential and limitations of the digital infrastructure. While different software packages and tools have become linked together into an integrated digital infrastructure, these emerging hybrid practices contrast with the interactions anticipated in practice and policy guidance and presenting new opportunities and challenges for managing project delivery. The study has implications for researchers working in the growing field of empirical work on engineering project organizations as it shows the importance of considering, and suggests new ways to theorise, the introduction of digital coordination practices into these institutionalized settings
A Brief History of AGN
Astronomers knew early in the twentieth century that some galaxies have
emission-line nuclei. However, even the systematic study by Seyfert (1943) was
not enough to launch active galactic nuclei (AGN) as a major topic of
astronomy. The advances in radio astronomy in the 1950s revealed a new universe
of energetic phenomena, and inevitably led to the discovery of quasars. These
discoveries demanded the attention of observers and theorists, and AGN have
been a subject of intense effort ever since. Only a year after the recognition
of the redshifts of 3C 273 and 3C 48 in 1963, the idea of energy production by
accretion onto a black hole was advanced. However, acceptance of this idea came
slowly, encouraged by the discovery of black hole X-ray sources in our Galaxy
and, more recently, supermassive black holes in the center of the Milky Way and
other galaxies. Many questions remain as to the formation and fueling of the
hole, the geometry of the central regions, the detailed emission mechanisms,
the production of jets, and other aspects. The study of AGN will remain a
vigorous part of astronomy for the foreseeable future.Comment: 37 pages, no figures. Uses aaspp4.sty. To be published in
Publications of the Astronomical Society of the Pacific, 1999 Jun
Beyond persons: extending the personal / subpersonal distinction to non-rational animals and artificial agents
The distinction between personal level explanations and subpersonal ones has been subject to much debate in philosophy. We understand it as one between explanations that focus on an agent’s interaction with its environment, and explanations that focus on the physical or computational enabling conditions of such an interaction. The distinction, understood this way, is necessary for a complete account of any agent, rational or not, biological or artificial. In particular, we review some recent research in Artificial Life that pretends to do completely without the distinction, while using agent-centered concepts all the way. It is argued that the rejection of agent level explanations in favour of mechanistic ones is due to an unmotivated need to choose among representationalism and eliminativism. The dilemma is a false one if the possibility of a radical form of externalism is considered
Judging the impact of leadership-development activities on school practice
The nature and effectiveness of professional-development activities should be judged in a way that takes account of
both the achievement of intended outcomes and the unintended consequences that may result. Our research project set out to create a robust approach that school staff members could use to assess the impact of
professional-development programs on leadership and management practice without being constrained in this judgment by the stated aims of the program. In the process,
we identified a number of factors and requirements relevant to a wider audience than that concerned with the development of leadership and management in England.
Such an assessment has to rest upon a clear understanding of educational leadership,a clearly articulated model of practice, and a clear model of potential forms of impact.
Such foundations, suitably adapted to the subject being addressed, are appropriate for assessing all teacher professional development
The open future, bivalence and assertion
It is highly intuitive that the future is open and the past is closed—whereas it is unsettled whether there will be a fourth world war, it is settled that there was a first. Recently, it has become increasingly popular to claim that the intuitive openness of the future implies that contingent statements about the future, such as ‘there will be a sea battle tomorrow,’ are non-bivalent (neither true nor false). In this paper, we argue that the non-bivalence of future contingents is at odds with our pre-theoretic intuitions about the openness of the future. These are revealed by our pragmatic judgments concerning the correctness and incorrectness of assertions of future contingents. We argue that the pragmatic data together with a plausible account of assertion shows that in many cases we take future contingents to be true (or to be false), though we take the future to be open in relevant respects. It follows that appeals to intuition to support the non-bivalence of future contingents is untenable. Intuition favours bivalence
Compressed sensing reconstruction of a string signal from interferometric observations of the cosmic microwave background
We propose an algorithm for the reconstruction of the signal induced by
cosmic strings in the cosmic microwave background (CMB), from
radio-interferometric data at arcminute resolution. Radio interferometry
provides incomplete and noisy Fourier measurements of the string signal, which
exhibits sparse or compressible magnitude of the gradient due to the
Kaiser-Stebbins (KS) effect. In this context the versatile framework of
compressed sensing naturally applies for solving the corresponding inverse
problem. Our algorithm notably takes advantage of a model of the prior
statistical distribution of the signal fitted on the basis of realistic
simulations. Enhanced performance relative to the standard CLEAN algorithm is
demonstrated by simulated observations under noise conditions including primary
and secondary CMB anisotropies.Comment: 11 pages, 6 figures. Version 2 matches version accepted for
publication in MNRAS. Changes include minor clarification
- …