9 research outputs found

    Hematopoietic progenitor cell content of vertebral body marrow used for combined solid organ and bone marrow transplantation

    Get PDF
    While cadaveric vertebral bodies (VB) have long been proposed as a suitable source of bone marrow (BM) for transplantation (BMT), they have rarely been used for this purpose. We have infused VB BM immediately following whole organ (WO) transplantation to augment donor cell chimerism. We quantified the hematopoietic progenitor cell (HPC) content of VB BM as well as BM obtained from the iliac crests (IC) of normal allogeneic donors (ALLO) and from patients with malignancy undergoing autologous marrow harvest (AUTO). Patients undergoing WO/BM transplantation also had AUTO BM harvested in the event that subsequent lymphohematopoietic reconstitution was required. Twenty-four VB BM, 24 IC BM-ALLO, 31 IC AUTO, and 24 IC WO-AUTO were harvested. VB BM was tested 12 to 72 hr after procurement and infused after completion of WO grafting. IC BM was tested and then used or cryopreserved immediately. HPC were quantified by clonal assay measuring CFU-GM, BFU-E, and CFU-GEMM, and by flow cytometry for CD34+ progenitor cells. On an average, 9 VB were processed during each harvest, and despite an extended processing time the number of viable nucleated cells obtained was significantly higher than that from IC. Furthermore, by HPC content, VB BM was equivalent to IC BM, which is routinely used for BMT. We conclude that VB BM is a clinically valuable source of BM for allogeneic transplantation. © 1995 by Williams & Wilkins

    Augmentation of chimerism in whole organ recipients by simultaneous infusion of donor bone marrow cells

    Get PDF
    We had previously demonstrated the persistence of donor leukocytes in the peripheral blood and tissues of long-surviving kidneyl and live2-4 recipients who had stable graft function many years after transplantation.1-6 Donor cell chimerism has since been noted by other investigators in recipients of heart,7 liver,8 kidney,9 and lungl0 transplants. In an attempt to augment chimerism, and thereby facilitate graft function, we initiated a prospective trial to enhance this phenomenon by infusing 3 × l0(8)/kg unaltered donor bone marrow cells perioperatively into an unmodified recipient of whole organ from the same donor. Additionally, 53 recipients of whole organ alone were monitored as controls. Reported herein are the first 20 of 64 study patients and 33 of 53 control patients who are more than 120 days posttransplantation

    Effects of Decade Long Freezing Storage on Adipose Derived Stem Cells Functionality

    No full text
    Over the last decade and half, the optimization of cryopreservation for adipose tissue derived stromal/stem cells (ASCs) especially in determining the optimal combination of cryoprotectant type, cooling rate, and thawing rate have been extensively studied. In this study, we examined the functionality of ASCs that have been frozen-stored for more than 10 years denoted as long-term freezing, frozen within the last 3 to 7 years denoted as short-term freezing and compared their response with fresh ASCs. The mean post-thaw viability for long-term frozen group was 78% whereas for short-term frozen group 79% with no significant differences between the two groups. The flow cytometry evaluation of stromal surface markers, CD29, CD90, CD105, CD44, and CD73 indicated the expression (above 95%) in passages P1-P4 in all of the frozen-thawed ASC groups and fresh ASCs whereas the hematopoietic markers CD31, CD34, CD45, and CD146 were expressed extremely low (below 2%) within both the frozen-thawed and fresh cell groups. Quantitative real time polymerase chain reaction (qPCR) analysis revealed some differences between the osteogenic gene expression of long-term frozen group in comparison to fresh ASCs. Intriguingly, one group of cells from the short-term frozen group exhibited remarkably higher expression of osteogenic genes in comparison to fresh ASCs. The adipogenic differentiation potential remained virtually unchanged between all of the frozen-thawed groups and the fresh ASCs. Long-term cryopreservation of ASCs, in general, has a somewhat negative impact on the osteogenic potential of ASCs, especially as it relates to the decrease in osteopontin gene expression but not significantly so with respect to RUNX2 and osteonectin gene expressions. However, the adipogenic potential, post thaw viability, and immunophenotype characteristics remain relatively intact between all the groups
    corecore