2 research outputs found

    Effects of Fluid Shear Stress on Polyelectrolyte Multilayers by Neutron Scattering Studies

    No full text
    The structure of layer-by-layer (LbL) deposited nanofilm coatings consists of alternating polyethylenimine (PEI) and polystyrenesulfonate (PSS) films deposited on a single crystal quartz substrate. LbL-deposited nanofilms were investigated by neutron reflectomery (NR) in contact with water in the static and fluid shear stress conditions. The fluid shear stress was applied through a laminar flow of the liquid parallel to the quartz/polymer interface in a custom-built solid–liquid interface cell. The scattering length density profiles obtained from NR results of these polyelectrolyte multilayers (PEM), measured under different shear conditions, showed proportional decrease of volume fraction of water hydrating the polymers. For the highest shear rate applied (ca. 6800 s<sup>–1</sup>) the water volume fraction decreased by approximately 7%. The decrease of the volume fraction of water was homogeneous through the thickness of the film. Since there were not any significant changes in the total polymer thickness, it resulted in negative osmotic pressures in the film. The PEM films were compared with the behavior of thin films of thermoresponsive poly­(<i>N</i>-isopropylacrylamide) (pNIPAM) deposited via spin-coating. The PEM and pNIPAM differ in their interactions with water molecules, and they showed opposite behaviors under the fluid shear stress. In both cases the polymer hydration was reversible upon the restoration of static conditions. A theoretical explanation is given to explain this difference in the effect of shear on hydration of polymeric thin films

    Remotely Controlled Micromanipulation by Buckling Instabilities in Fe<sub>3</sub>O<sub>4</sub> Nanoparticle Embedded Poly(<i>N</i>‑isopropylacrylamide) Surface Arrays

    No full text
    The micromanipulation of biological samples is important for microbiology, pharmaceutical science, and related bioengineering fields. In this work, we report the fabrication and characterization of surface-attached microbeam arrays of 20 μm width and 25 μm height made of poly­(<i>N</i>-isopropylacrylamide), a thermoresponsive polymer, with embedded spherical or octopod Fe<sub>3</sub>O<sub>4</sub> nanoparticles. Below 32 °C, the microbeams imbibe water and buckle with an amplitude of approximately 20 μm. Turning on an AC-magnetic field induces the microbeam array to expel water due to the heating effect of the nanoparticles (magnetic hyperthermia), leading to a reversible transition from a buckled to nonbuckled state. It is observed that the octopod nanoparticles have a heating rate 30% greater (specific absorption rate, SAR) than that of the spherical nanoparticles, which shortens the time scale of the transition from the buckled and nonbuckled state. The return of the microbeams to the buckled state is accomplished by turning off the AC magnetic field, the rate of which is dictated by dissipation of heat and is independent of the type of nanoparticle. It is further demonstrated that this transition can be used to propel 50 μm spherical objects along a surface. While the motion is random, this study shows the promise of harnessing shape-shifting patterns in microfluidics for object manipulation
    corecore