142 research outputs found

    Guidelines for writing definitions in ontologies

    Get PDF
    Ontologies are being used increasingly to promote the reusability of scientific information by allowing heterogeneous data to be integrated under a common, normalized representation. Definitions play a central role in the use of ontologies both by humans and by computers. Textual definitions allow ontologists and data curators to understand the intended meaning of ontology terms and to use these terms in a consistent fashion across contexts. Logical definitions allow machines to check the integrity of ontologies and reason over data annotated with ontology terms to make inferences that promote knowledge discovery. Therefore, it is important not only to include in ontologies multiple types of definitions in both formal and in natural languages, but also to ensure that these definitions meet good quality standards so they are useful. While tools such as Protégé can assist in creating well-formed logical definitions, producing good definitions in a natural language is still to a large extent a matter of human ingenuity supported at best by just a small number of general principles. For lack of more precise guidelines, definition authors are often left to their own personal devices. This paper aims to fill this gap by providing the ontology community with a set of principles and conventions to assist in definition writing, editing, and validation, by drawing on existing definition writing principles and guidelines in lexicography, terminology, and logic

    Definitions in ontologies

    Get PDF
    Definitions vary according to context of use and target audience. They must be made relevant for each context to fulfill their cognitive and linguistic goals. This involves adapting their logical structure, type of content, and form to each context of use. We examine from these perspectives the case of definitions in ontologies

    Developing the Quantitative Histopathology Image Ontology : A case study using the hot spot detection problem

    Get PDF
    Interoperability across data sets is a key challenge for quantitative histopathological imaging. There is a need for an ontology that can support effective merging of pathological image data with associated clinical and demographic data. To foster organized, cross-disciplinary, information-driven collaborations in the pathological imaging field, we propose to develop an ontology to represent imaging data and methods used in pathological imaging and analysis, and call it Quantitative Histopathological Imaging Ontology – QHIO. We apply QHIO to breast cancer hot-spot detection with the goal of enhancing reliability of detection by promoting the sharing of data between image analysts

    MIREOT: the Minimum Information to Reference an External Ontology Term

    Get PDF
    While the Web Ontology Language (OWL) provides a mechanism to import ontologies, this mechanism is not always suitable. First, given the current state of editing tools and the issues they have working with large ontologies, direct OWL imports have sometimes proven impractical for day-to-day development. Second, ontologies chosen for integration may be under active development and not aligned with the chosen design principles. Importing heterogeneous ontologies in their entirety may lead to inconsistencies or unintended inferences. In this paper we propose a set of guidelines for importing required terms from an external resource into a target ontology. We describe the guidelines, their implementation, present some examples of application, and outline future work and extensions

    The functions of definitions in ontologies

    Get PDF
    To understand what ontologies do through their definitions, we propose a theoretical explanation of the functions of definitions in ontologies backed by empirical neuropsychological studies. Our goal is to show how these functions should motivate (i) the systematic inclusion of definitions in ontologies and (ii) the adaptation of definition content and form to the specific context of use of ontologies

    Toll-like receptor signaling in vertebrates: Testing the integration of protein, complex, and pathway data in the Protein Ontology framework

    Get PDF
    The Protein Ontology (PRO) provides terms for and supports annotation of species-specific protein complexes in an ontology framework that relates them both to their components and to species-independent families of complexes. Comprehensive curation of experimentally known forms and annotations thereof is expected to expose discrepancies, differences, and gaps in our knowledge. We have annotated the early events of innate immune signaling mediated by Toll-Like Receptor 3 and 4 complexes in human, mouse, and chicken. The resulting ontology and annotation data set has allowed us to identify species-specific gaps in experimental data and possible functional differences between species, and to employ inferred structural and functional relationships to suggest plausible resolutions of these discrepancies and gaps

    Ontologies for the study of neurological disease

    Get PDF
    We have begun work on two separate but related ontologies for the study of neurological diseases. The first, the Neurological Disease Ontology (ND), is intended to provide a set of controlled, logically connected classes to describe the range of neurological diseases and their associated signs and symptoms, assessments, diagnoses, and interventions that are encountered in the course of clinical practice. ND is built as an extension of the Ontology for General Medical Sciences — a high-level candidate OBO Foundry ontology that provides a set of general classes that can be used to describe general aspects of medical science. ND is being built with classes utilizing both textual and axiomatized definitions that describe and formalize the relations between instances of other classes within the ontology itself as well as to external ontologies such as the Gene Ontology, Cell Ontology, Protein Ontology, and Chemical Entities of Biological Interest. In addition, references to similar or associated terms in external ontologies, vocabularies and terminologies are included when possible. Initial work on ND is focused on the areas of Alzheimer’s and other diseases associated with dementia, multiple sclerosis, and stroke and cerebrovascular disease. Extensions to additional groups of neurological diseases are planned. The second ontology, the Neuro-Psychological Testing Ontology (NPT), is intended to provide a set of classes for the annotation of neuropsychological testing data. The intention of this ontology is to allow for the integration of results from a variety of neuropsychological tests that assay similar measures of cognitive functioning. Neuro-psychological testing is an important component in developing the clinical picture used in the diagnosis of patients with a range of neurological diseases, such as Alzheimer’s disease and multiple sclerosis, and following stroke or traumatic brain injury. NPT is being developed as an extension to the Ontology for Biomedical Investigations

    The Non-Coding RNA Ontology : a comprehensive resource for the unification of non-coding RNA biology

    Get PDF
    In recent years, sequencing technologies have enabled the identification of a wide range of non-coding RNAs (ncRNAs). Unfortunately, annotation and integration of ncRNA data has lagged behind their identification. Given the large quantity of information being obtained in this area, there emerges an urgent need to integrate what is being discovered by a broad range of relevant communities. To this end, the Non-Coding RNA Ontology (NCRO) is being developed to provide a systematically structured and precisely defined controlled vocabulary for the domain of ncRNAs, thereby facilitating the discovery, curation, analysis, exchange, and reasoning of data about structures of ncRNAs, their molecular and cellular functions, and their impacts upon phenotypes. The goal of NCRO is to serve as a common resource for annotations of diverse research in a way that will significantly enhance integrative and comparative analysis of the myriad resources currently housed in disparate sources. It is our belief that the NCRO ontology can perform an important role in the comprehensive unification of ncRNA biology and, indeed, fill a critical gap in both the Open Biological and Biomedical Ontologies (OBO) Library and the National Center for Biomedical Ontology (NCBO) BioPortal. Our initial focus is on the ontological representation of small regulatory ncRNAs, which we see as the first step in providing a resource for the annotation of data about all forms of ncRNAs. The NCRO ontology is free and open to all users

    A domain ontology for the non-coding RNA field

    Get PDF
    Identification of non-coding RNAs (ncRNAs) has been significantly enhanced due to the rapid advancement in sequencing technologies. On the other hand, semantic annotation of ncRNA data lag behind their identification, and there is a great need to effectively integrate discovery from relevant communities. To this end, the Non-Coding RNA Ontology (NCRO) is being developed to provide a precisely defined ncRNA controlled vocabulary, which can fill a specific and highly needed niche in unification of ncRNA biology

    The representation of protein complexes in the Protein Ontology

    Get PDF
    Representing species-specific proteins and protein complexes in ontologies that are both human and machine-readable facilitates the retrieval, analysis, and interpretation of genome-scale data sets. Although existing protin-centric informatics resources provide the biomedical research community with well-curated compendia of protein sequence and structure, these resources lack formal ontological representations of the relationships among the proteins themselves. The Protein Ontology (PRO) Consortium is filling this informatics resource gap by developing ontological representations and relationships among proteins and their variants and modified forms. Because proteins are often functional only as members of stable protein complexes, the PRO Consortium, in collaboration with existing protein and pathway databases, has launched a new initiative to implement logical and consistent representation of protein complexes. We describe here how the PRO Consortium is meeting the challenge of representing species-specific protein complexes, how protein complex representation in PRO supports annotation of protein complexes and comparative biology, and how PRO is being integrated into existing community bioinformatics resources. The PRO resource is accessible at http://pir.georgetown.edu/pro/
    corecore