5 research outputs found

    Magnetic penetration depth in electron-doped cuprates - evidence for gap nodes

    Full text link
    The in-plane penetration depth \lambda(T) is measured in electron-doped single crystals Nd1.85Ce0.15CuO4-x (NCCO) and Pr1.85Ce0.15CuO4-x (PCCO) using a 11 MHz LC resonator. In NCCO, \lambda(T) exhibits a minimum at 3.8 K and a pronounced upturn down to 0.4 K due to the paramagnetic contribution of Nd3+ ions. The London penetration depth contribution is linear in T. The paramagnetic contribution is absent in PCCO, where \lambda(T)~T^2 at low temperatures. Our results indicate the presence of nodes in the superconducting gap, i.e., non s-wave symmetry of the order parameter in electron-doped cuprates.Comment: 2 pages Acrobat-3 optimized PDF. To be presented at M2S-HTSC-V

    Topological Hysteresis in the Intermediate State of Type-I Superconductors

    Full text link
    Magneto-optical imaging of thick stress-free lead samples reveals two distinct topologies of the intermediate state. Flux tubes are formed upon magnetic field penetration (closed topology) and laminar patterns appear upon flux exit (open topology). Two-dimensional distributions of shielding currents were obtained by applying an efficient inversion scheme. Quantitative analysis of the magnetic induction distribution and correlation with magnetization measurements indicate that observed topological differences between the two phases are responsible for experimentally observable magnetic hysteresis.Comment: 4 pages, RevTex

    Anisotropic s-wave superconductivity in single crystals CaAlSi from penetration depth measurements

    Full text link
    In- and out-of-plane London penetration depths were measured in single crystals CaAlSi (T_{c}=6.2 K and 7.3 K) using a tunnel-diode resonator. A full 3D BCS analysis of the superfluid density is consistent with a prolate spheroidal gap, with a weak-coupling BCS value in the ab-plane and stronger coupling along the c-axis. The gap anisotropy was found to significantly decrease for higher T_{c} samples.Comment: 4 page

    Magnetic Penetration Depth in Unconventional Superconductors

    Full text link
    This topical review summarizes various features of magnetic penetration depth in unconventional superconductors. Precise measurements of the penetration depth as a function of temperature, magnetic field and crystal orientation can provide detailed information about the pairing state. Examples are given of unconventional pairing in hole- and electron-doped cuprates, organic and heavy fermion superconductors. The ability to apply an external magnetic field adds a new dimension to penetration depth measurements. We discuss how field dependent measurements can be used to study surface Andreev bound states, nonlinear Meissner effects, magnetic impurities, magnetic ordering, proximity effects and vortex motion. We also discuss how penetration depth measurements as a function of orientation can be used to explore superconductors with more than one gap and with anisotropic gaps. Details relevant to the analysis of penetration depth data in anisotropic samples are also discussed.Comment: topical review, 57 pages, 219 reference

    Therapeutic targeting of 3′,5′-cyclic nucleotide phosphodiesterases: inhibition and beyond

    No full text
    corecore