29 research outputs found

    InP and AlInP(001)(2 × 4) surface oxidation from density functional theory

    Get PDF
    The atomic structure and electronic properties of the InP and Al0.5In0.5P(001) surfaces at the initial stages of oxidation are investigated via density functional theory. Thereby, we focus on the mixed-dimer (2 × 4) surfaces stable for cation-rich preparation conditions. For InP, the top In-P dimer is the most favored adsorption site, while it is the second-layer Al-Al dimer for AlInP. The energetically favored adsorption sites yield group III-O bond-related states in the energy region of the bulk band gap, which may act as recombination centers. Consistently, the In p state density around the conduction edge is found to be reduced upon oxidation

    Reconstructions of the As-terminated GaAs(001) surface exposed to atomic hydrogen

    Get PDF
    We explore the atomic structures and electronic properties of the As-terminated GaAs(001) surface in the presence of hydrogen based on ab initio density functional theory. We calculate a phase diagram dependent on the chemical potentials of As and H, showing which surface reconstruction is the most stable for a given set of chemical potentials. The findings are supported by the calculation of energy landscapes of the surfaces, which indicate possible H bonding sites as well as the density of states, which show the effect of hydrogen adsorption on the states near the fundamental band gap

    ASi-Sii defect model of light-induced degradation (LID) in silicon: a discussion and review

    Get PDF
    The ASi-Sii defect model as one possible explanation for light-induced degradation (LID) in typically boron-doped silicon solar cells, detectors, and related systems is discussed and reviewed. Starting from the basic experiments which led to the ASi-Sii defect model, the ASi-Sii defect model (A: boron, or indium) is explained and contrasted to the assumption of a fast-diffusing so-called “boron interstitial.” An LID cycle of illumination and annealing is discussed within the conceptual frame of the ASi-Sii defect model. The dependence of the LID defect density on the interstitial oxygen concentration is explained within the ASi-Sii defect picture. By comparison of electron paramagnetic resonance data and minority carrier lifetime data related to the assumed fast diffusion of the “boron interstitial” and the annihilation of the fast LID component, respectively, the characteristic EPR signal Si-G28 in boron-doped silicon is related to a specific ASi-Sii defect state. Several other LID-related experiments are found to be consistent with an interpretation by an ASi-Sii defect

    Highly efficient passive Tesla valves for microfluidic applications

    Get PDF
    A multistage optimization method is developed yielding Tesla valves that are efficient even at low flow rates, characteristic, e.g., for almost all microfluidic systems, where passive valves have intrinsic advantages over active ones. We report on optimized structures that show a diodicity of up to 1.8 already at flow rates of 20 μl s−1 corresponding to a Reynolds number of 36. Centerpiece of the design is a topological optimization based on the finite element method. It is set-up to yield easy-to-fabricate valve structures with a small footprint that can be directly used in microfluidic systems. Our numerical two-dimensional optimization takes into account the finite height of the channel approximately by means of a so-called shallow-channel approximation. Based on the three-dimensionally extruded optimized designs, various test structures were fabricated using standard, widely available microsystem manufacturing techniques. The manufacturing process is described in detail since it can be used for the production of similar cost-effective microfluidic systems. For the experimentally fabricated chips, the efficiency of the different valve designs, i.e., the diodicity defined as the ratio of the measured pressure drops in backward and forward flow directions, respectively, is measured and compared to theoretical predictions obtained from full 3D calculations of the Tesla valves. Good agreement is found. In addition to the direct measurement of the diodicities, the flow profiles in the fabricated test structures are determined using a two-dimensional microscopic particle image velocimetry (μPIV) method. Again, a reasonable good agreement of the measured flow profiles with simulated predictions is observed

    Long-lived electron emission reveals localized plasmon modes in disordered nanosponge antennas

    Get PDF
    We report long-lived, highly spatially localized plasmon states on the surface of nanoporous gold nanoparticles-nanosponges-with high excitation efficiency. It is well known that disorder on the nanometer scale, particularly in two-dimensional systems, can lead to plasmon localization and large field enhancements, which can, in turn, be used to enhance nonlinear optical effects and to study and exploit quantum optical processes. Here, we introduce promising, three-dimensional model systems for light capture and plasmon localization as gold nanosponges that are formed by the dewetting of gold/ silver bilayers and dealloying. We study light-induced electron emission from single nanosponges, a nonlinear process with exponents of n approximate to 5...7, using ultrashort laser pulse excitation to achieve femtosecond time resolution. The long-lived electron emission process proves, in combination with optical extinction measurements and finite-difference time-domain calculations, the existence of localized modes with lifetimes of more than 20 fs. These electrons couple efficiently to the dipole antenna mode of each individual nanosponge, which in turn couples to the far-field. Thus, individual gold nanosponges are cheap and robust disordered nanoantennas with strong local resonances, and an ensemble of nanosponges constitutes a meta material with a strong polarization independent, nonlinear response over a wide frequency range

    Impact of Rotational Twin Boundaries and Lattice Mismatch on III-V Nanowire Growth

    Get PDF
    Pseudomorphic planar III-V transition layers greatly facilitate the epitaxial integration of vapor liquid solid grown III-V nanowires (NW) on Si(111) substrates. Heteroepitaxial (111) layer growth, however, is commonly accompanied by the formation of rotational twins. We find that rotational twin boundaries (RTBs), which intersect the surface of GaP/Si(111) heterosubstrates, generally cause horizontal NW growth and may even suppress NW growth entirely. Away from RTBs, the NW growth direction switches from horizontal to vertical in the case of homoepitaxial GaP NWs, whereas heteroepitaxial GaAs NWs continue growing horizontally. To understand this rich phenomenology, we develop a model based on classical nucleation theory. Independent of the occurrence of RTBs and specific transition layers, our model can generally explain the prevalent observation of horizontal III V NW growth-in lattice mismatched systems and the high crystal quality of horizontal nanowires.This work was financially supported by the BMBF (Project No. 03SF0404A) and partly by the Spanish Ministry of Economy (Project TEC2014-54260-C3-2-P). C.K. and L.W. acknowledge the Thuringia Graduate School for Photovoltaics “Photograd” for financial support. The authors would like to thank A. Paszuk and A. Nagelein for valuable discussions as well as A. Muller and M. Biester for technical support, T. Nieszner for supporting the determination of the spatial direction of NWs, and D. Roßberg for preparing the TEM lamella

    Electronic and vibrational states of single tin-phthalocyanine molecules in double layers on Ag(111)

    Get PDF
    Electronic and vibrational properties of the two stable molecular configurations of Sn-phthalocyanine adsorbed on an ultrathin Sn-phthalocyanine buffer film on Ag(111) have been investigated with scanning tunneling microscopy and density functional calculations. Complex submolecular patterns are experimentally observed in unoccupied states images. The calculations show that they result from a superposition of Sn p orbitals. Furthermore, the characteristic features in spectra of the differential conductance are reproduced by the calculations together with a remarkable difference between the two configurations. First-principles calculations show that rather than a single vibrational mode and its higher harmonics the excitations of different molecular vibrational quanta induce replica of orbital spectroscopic signatures. The replicated orbital features appear for the configuration with a low molecule-surface coupling. To model spectra of molecules with a larger coupling to the surface it is sufficient to consider elastic tunneling to orbital resonances alone
    corecore