203 research outputs found

    Open Access

    Get PDF
    Global spatiotemporal and genetic footprint o

    Spatial-Aware Multi-Level Parsing Network for Human-Object Interaction

    Get PDF
    Human-Object Interaction (HOI) detection focuses on human-centered visual relationship detection, which is a challenging task due to the complexity and diversity of image content. Unlike most recent HOI detection works that only rely on paired instance-level information in the union range, our proposed Spatial-aware Multilevel Parsing Network (SMPNet) uses a multi-level information detection strategy, including instance-level visual features of detected human-object pair, part-level related features of the human body, and scene-level features extracted by the graph neural network. After fusing the three levels of features, the HOI relationship is predicted. We validate our method on two public datasets, V-COCO and HICO-DET. Compared with prior works, our proposed method achieves the state-of-the-art results on both datasets in terms of mAProle, which demonstrates the effectiveness of our proposed multi-level information detection strategy

    Overexpression of luxS Promotes Stress Resistance and Biofilm Formation of Lactobacillus paraplantarum L-ZS9 by Regulating the Expression of Multiple Genes

    Get PDF
    Probiotics have evoked great interest in the past years for their beneficial effects. The aim of this study was to investigate whether luxS overexpression promotes the stress resistance of Lactobacillus paraplantarum L-ZS9. Here we show that overexpression of luxS gene increased the production of autoinducer-2 (AI-2, quorum sensing signal molecule) by L. paraplantarum L-ZS9. At the same time, overexpression of luxS promoted heat-, bile salt-resistance and biofilm formation of the strain. RNAseq results indicated that multiple genes encoding transporters, membrane proteins, and transcriptional regulator were regulated by luxS. These results reveal a new role for LuxS in promoting stress resistance and biofilm formation of probiotic starter

    Combined Effect of Thermal Shock and Hot Corrosion on the Failure of Yttria Stabilized Zirconia Thermal Barrier Coatings

    Get PDF
    The application of thermal barrier coatings (TBCs) always undergo severe environment, concluding hot corrosion, high temperature oxidation and higher stress, which result in the failure of TBCs. The study of failure mechanisms of TBCs under various combined environmental factors, different with single factor, is more significant to further promote the applications of TBCs. In the present work, the combined effect of thermal shock and hot corrosion on the failure of TBCs was highlighted investigated. The 8wt.% yttria stabilized zirconia (8YSZ) thermal barrier coatings on a GH2132 alloy were deposited by air plasma spraying. The results showed that the transformation of ZrO2 from tetragonal phase to monoclinic phase induced internal stress in the topcoat, when combined with the thermal stress, the topcoat even the bondcoat were both cracked. The main failure of TBCs under the combined effect was in the form of penetrating crack to the bondcoat/substrate interface and oxidation at the penetrating crack front

    Detection of New Quorum Sensing N-Acyl Homoserine Lactones From Aeromonas veronii

    Get PDF
    Sturgeon is an important fresh water-culture fish in China. A problem with sturgeon is its high susceptibility to spoilage. Food spoilage is reported to be regulated by quorum sensing (QS). To identify the QS signals acetylated homoserine lactones (AHLs) in sturgeon and test whether QS plays a role in the spoilage of sturgeon, we investigated the specific spoilage organisms (SSOs) in vacuum packaged sturgeon stored at 4°C and the production of AHLs by sturgeon SSOs. 16S rDNA sequencing and spoilage capabilities analysis revealed that Aeromonas veronii LP-11, Citrobacter freundii LPJ-2, and Raoultella ornithinolytica LPC-3 were the SSOs in sturgeon. Among the three SSOs, only A. veronii LP-11 induced the QS biosensors Agrobacterium tumefaciens KYC55 and Chromobacterium violaceum CV026, suggesting that it produced AHLs. Analysis by thin layer chromatography, high-performance liquid chromatography-triple quadrupole tandem mass spectrometry, and high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC/qTOF-MS) identified that the AHLs produced by A. veronii were C6-SHL, C8-HSL, 3-oxo-C8-HSL, and 3-OH-C8-HSL. Our study revealed that QS system was probably involved in the regulation of sturgeon spoilage and for the first time reported the production of C8-HSL and 3-OH-C8-HSL by genus Aeromonas. As only HPLC/qTOF-MS effectively and accurately identified all the four AHLs produced by A. veronii LP-11, this study also showed that HPLC/qTOF-MS was the most efficient method for rapid analysis of AHLs in complex microbial sample. The study provides new insight into the microbiology of sturgeon spoilage which may be helpful for better sturgeon preservation

    Live poultry trading drives China's H7N9 viral evolution and geographical network propagation

    Get PDF
    The on-going reassortment, human-adapted mutations, and spillover events of novel A(H7N9) avian influenza viruses pose a significant challenge to public health in China and globally. However, our understanding of the factors that disseminate the viruses and drive their geographic distributions is limited. We applied phylogenic analysis to examine the inter-subtype interactions between H7N9 viruses and the closest H9N2 lineages in China during 2010–2014. We reconstructed and compared the inter-provincial live poultry trading and viral propagation network via phylogeographic approach and network similarity technique. The substitution rates of the isolated viruses in live poultry markets and the characteristics of localized viral evolution were also evaluated. We discovered that viral propagation was geographically-structured and followed the live poultry trading network in China, with distinct north-to-east paths of spread and circular transmission between eastern and southern regions. The epicenter of H7N9 has moved from the Shanghai–Zhejiang region to Guangdong Province was also identified. Besides, higher substitution rate was observed among isolates sampled from live poultry markets, especially for those H7N9 viruses. Live poultry trading in China may have driven the network-structured expansion of the novel H7N9 viruses. From this perspective, long-distance geographic expansion of H7N9 were dominated by live poultry movements, while at local scales, diffusion was facilitated by live poultry markets with highly-evolved viruses

    Small nucleolar RNA signatures as biomarkers for non-small-cell lung cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-small-cell lung cancer (NSCLC) is the leading cause of cancer death. Early detection of NSCLC will improve its outcome. The current techniques for NSCLC early detection are either invasive or have low accuracy. Molecular analyses of clinical specimens present promising diagnostic approaches. Non-coding RNAs (ncRNAs) play an important role in tumorigenesis and could be developed as biomarkers for cancer. Here we aimed to develop small nucleolar RNAs (snoRNAs), a common class of ncRNAs, as biomarkers for NSCLC early detection. The study comprised three phases: (1) profiling snoRNA signatures in 22 NSCLC tissues and matched noncancerous lung tissues by GeneChip Array, (2) validating expressions of the signatures by RT-qPCR in the tissues, and (3) evaluating plasma expressions of the snoRNAs in 37 NSCLC patients, 26 patients with chronic obstructive pulmonary disease (COPD), and 22 healthy subjects.</p> <p>Results</p> <p>In the surgical tissues, six snoRNAs were identified, which were overexpressed in all tumour tissues compared with their normal counterparts. The overexpressions of the genes in tumors were confirmed by RT-qPCR. The snoRNAs were stably present and reliably detectable in plasma. Of the six genes, three (SNORD33, SNORD66 and SNORD76) displayed higher plasma expressions in NSCLC patients compared with the cancer-free individuals (All < 0.01). The use of the three genes produced 81.1% sensitivity and 95.8% specificity in distinguishing NSCLC patients from both normal and COPD subjects. The plasma snoRNA expressions were not associated with stages and histological types of NSCLC (All > 0.05).</p> <p>Conclusions</p> <p>The identified snoRNAs provide potential markers for NSCLC early detection.</p

    D-Ribose Interferes with Quorum Sensing to Inhibit Biofilm Formation of Lactobacillus paraplantarum L-ZS9

    Get PDF
    Biofilms help bacteria survive under adverse conditions, and the quorum sensing (QS) system plays an important role in regulating their activities. Quorum sensing inhibitors (QSIs) have great potential to inhibit pathogenic biofilm formation and are considered possible replacements for antibiotics; however, further investigation is required to understand the mechanisms of action of QSIs and to avoid inhibitory effects on beneficial bacteria. Lactobacillus paraplantarum L-ZS9, isolated from fermented sausage, is a bacteriocin-producing bacteria that shows potential to be a probiotic starter. Since exogenous autoinducer-2 (AI-2) promoted biofilm formation of the strain, expression of genes involved in AI-2 production was determined in L. paraplantarum L-ZS9, especially the key gene luxS. D-Ribose was used to inhibit biofilm formation because of its AI-2 inhibitory activity. Twenty-seven differentially expressed proteins were identified by comparative proteomic analysis following D-ribose treatment and were functionally classified into six groups. Real-time quantitative PCR showed that AI-2 had a counteractive effect on transcription of the genes tuf, fba, gap, pgm, nfo, rib, and rpoN. Over-expression of the tuf, fba, gap, pgm, and rpoN genes promoted biofilm formation of L. paraplantarum L-ZS9, while over-expression of the nfo and rib genes inhibited biofilm formation. In conclusion, D-ribose inhibited biofilm formation of L. paraplantarum L-ZS9 by regulating multiple genes involved in the glycolytic pathway, extracellular DNA degradation and transcription, and translation. This research provides a new mechanism of QSI regulation of biofilm formation of Lactobacillus and offers a valuable reference for QSI application in the future
    corecore