5,109 research outputs found

    Adaptive sensing performance lower bounds for sparse signal detection and support estimation

    Get PDF
    This paper gives a precise characterization of the fundamental limits of adaptive sensing for diverse estimation and testing problems concerning sparse signals. We consider in particular the setting introduced in (IEEE Trans. Inform. Theory 57 (2011) 6222-6235) and show necessary conditions on the minimum signal magnitude for both detection and estimation: if xRn{\mathbf {x}}\in \mathbb{R}^n is a sparse vector with ss non-zero components then it can be reliably detected in noise provided the magnitude of the non-zero components exceeds 2/s\sqrt{2/s}. Furthermore, the signal support can be exactly identified provided the minimum magnitude exceeds 2logs\sqrt{2\log s}. Notably there is no dependence on nn, the extrinsic signal dimension. These results show that the adaptive sensing methodologies proposed previously in the literature are essentially optimal, and cannot be substantially improved. In addition, these results provide further insights on the limits of adaptive compressive sensing.Comment: Published in at http://dx.doi.org/10.3150/13-BEJ555 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Adaptive Sensing for Estimation of Structured Sparse Signals

    Get PDF
    In many practical settings one can sequentially and adaptively guide the collection of future data, based on information extracted from data collected previously. These sequential data collection procedures are known by different names, such as sequential experimental design, active learning or adaptive sensing/sampling. The intricate relation between data analysis and acquisition in adaptive sensing paradigms can be extremely powerful, and often allows for reliable signal estimation and detection in situations where non-adaptive sensing would fail dramatically. In this work we investigate the problem of estimating the support of a structured sparse signal from coordinate-wise observations under the adaptive sensing paradigm. We present a general procedure for support set estimation that is optimal in a variety of cases and shows that through the use of adaptive sensing one can: (i) mitigate the effect of observation noise when compared to non-adaptive sensing and, (ii) capitalize on structural information to a much larger extent than possible with non-adaptive sensing. In addition to a general procedure to perform adaptive sensing in structured settings we present both performance upper bounds, and corresponding lower bounds for both sensing paradigms

    Adaptive Compressed Sensing for Support Recovery of Structured Sparse Sets

    Get PDF
    This paper investigates the problem of recovering the support of structured signals via adaptive compressive sensing. We examine several classes of structured support sets, and characterize the fundamental limits of accurately recovering such sets through compressive measurements, while simultaneously providing adaptive support recovery protocols that perform near optimally for these classes. We show that by adaptively designing the sensing matrix we can attain significant performance gains over non-adaptive protocols. These gains arise from the fact that adaptive sensing can: (i) better mitigate the effects of noise, and (ii) better capitalize on the structure of the support sets.Comment: to appear in IEEE Transactions on Information Theor

    Distilled Sensing: Adaptive Sampling for Sparse Detection and Estimation

    Full text link
    Adaptive sampling results in dramatic improvements in the recovery of sparse signals in white Gaussian noise. A sequential adaptive sampling-and-refinement procedure called Distilled Sensing (DS) is proposed and analyzed. DS is a form of multi-stage experimental design and testing. Because of the adaptive nature of the data collection, DS can detect and localize far weaker signals than possible from non-adaptive measurements. In particular, reliable detection and localization (support estimation) using non-adaptive samples is possible only if the signal amplitudes grow logarithmically with the problem dimension. Here it is shown that using adaptive sampling, reliable detection is possible provided the amplitude exceeds a constant, and localization is possible when the amplitude exceeds any arbitrarily slowly growing function of the dimension.Comment: 23 pages, 2 figures. Revision includes minor clarifications, along with more illustrative experimental results (cf. Figure 2

    Economic Development under Alternative Trade Regimes

    Get PDF
    How does openness affect economic development? This question is answered in the context of a dynamic general equilibrium model of the world economy, where countries have technological differences that are both sector-neutral and specific to the investment goods sector. Relative to a benchmark case of trade in credit markets only, consider (i) a complete restriction of trade, and (ii) a full liberalization of trade. The first change decreases the cross-sectional dispersion of incomes only slightly, and produces a relatively small welfare loss. The second change, instead, decreases dispersion by a significant amount, and produces a very large welfare gain

    Cross-Sectoral Variation in The Volatility of Plant-Level Idiosyncratic Shocks

    Get PDF
    We estimate the volatility of plant–level idiosyncratic shocks in the U.S. manufacturing sector. Our measure of volatility is the variation in Revenue Total Factor Productivity which is not explained by either industry– or economy–wide factors, or by establishments’ characteristics. Consistent with previous studies, we find that idiosyncratic shocks are much larger than aggregate random disturbances, accounting for about 80% of the overall uncertainty faced by plants. The extent of cross–sectoral variation in the volatility of shocks is remarkable. Plants in the most volatile sector are subject to about six times as much idiosyncratic uncertainty as plants in the least volatile. We provide evidence suggesting that idiosyncratic risk is higher in industries where the extent of creative destruction is likely to be greater.
    corecore