5,109 research outputs found
Adaptive sensing performance lower bounds for sparse signal detection and support estimation
This paper gives a precise characterization of the fundamental limits of
adaptive sensing for diverse estimation and testing problems concerning sparse
signals. We consider in particular the setting introduced in (IEEE Trans.
Inform. Theory 57 (2011) 6222-6235) and show necessary conditions on the
minimum signal magnitude for both detection and estimation: if is a sparse vector with non-zero components then it
can be reliably detected in noise provided the magnitude of the non-zero
components exceeds . Furthermore, the signal support can be exactly
identified provided the minimum magnitude exceeds . Notably
there is no dependence on , the extrinsic signal dimension. These results
show that the adaptive sensing methodologies proposed previously in the
literature are essentially optimal, and cannot be substantially improved. In
addition, these results provide further insights on the limits of adaptive
compressive sensing.Comment: Published in at http://dx.doi.org/10.3150/13-BEJ555 the Bernoulli
(http://isi.cbs.nl/bernoulli/) by the International Statistical
Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
Adaptive Sensing for Estimation of Structured Sparse Signals
In many practical settings one can sequentially and adaptively guide the
collection of future data, based on information extracted from data collected
previously. These sequential data collection procedures are known by different
names, such as sequential experimental design, active learning or adaptive
sensing/sampling. The intricate relation between data analysis and acquisition
in adaptive sensing paradigms can be extremely powerful, and often allows for
reliable signal estimation and detection in situations where non-adaptive
sensing would fail dramatically.
In this work we investigate the problem of estimating the support of a
structured sparse signal from coordinate-wise observations under the adaptive
sensing paradigm. We present a general procedure for support set estimation
that is optimal in a variety of cases and shows that through the use of
adaptive sensing one can: (i) mitigate the effect of observation noise when
compared to non-adaptive sensing and, (ii) capitalize on structural information
to a much larger extent than possible with non-adaptive sensing. In addition to
a general procedure to perform adaptive sensing in structured settings we
present both performance upper bounds, and corresponding lower bounds for both
sensing paradigms
Adaptive Compressed Sensing for Support Recovery of Structured Sparse Sets
This paper investigates the problem of recovering the support of structured
signals via adaptive compressive sensing. We examine several classes of
structured support sets, and characterize the fundamental limits of accurately
recovering such sets through compressive measurements, while simultaneously
providing adaptive support recovery protocols that perform near optimally for
these classes. We show that by adaptively designing the sensing matrix we can
attain significant performance gains over non-adaptive protocols. These gains
arise from the fact that adaptive sensing can: (i) better mitigate the effects
of noise, and (ii) better capitalize on the structure of the support sets.Comment: to appear in IEEE Transactions on Information Theor
Distilled Sensing: Adaptive Sampling for Sparse Detection and Estimation
Adaptive sampling results in dramatic improvements in the recovery of sparse
signals in white Gaussian noise. A sequential adaptive sampling-and-refinement
procedure called Distilled Sensing (DS) is proposed and analyzed. DS is a form
of multi-stage experimental design and testing. Because of the adaptive nature
of the data collection, DS can detect and localize far weaker signals than
possible from non-adaptive measurements. In particular, reliable detection and
localization (support estimation) using non-adaptive samples is possible only
if the signal amplitudes grow logarithmically with the problem dimension. Here
it is shown that using adaptive sampling, reliable detection is possible
provided the amplitude exceeds a constant, and localization is possible when
the amplitude exceeds any arbitrarily slowly growing function of the dimension.Comment: 23 pages, 2 figures. Revision includes minor clarifications, along
with more illustrative experimental results (cf. Figure 2
Economic Development under Alternative Trade Regimes
How does openness affect economic development? This question is answered in the context of a dynamic general equilibrium model of the world economy, where countries have technological differences that are both sector-neutral and specific to the investment goods sector. Relative to a benchmark case of trade in credit markets only, consider (i) a complete restriction of trade, and (ii) a full liberalization of trade. The first change decreases the cross-sectional dispersion of incomes only slightly, and produces a relatively small welfare loss. The second change, instead, decreases dispersion by a significant amount, and produces a very large welfare gain
Cross-Sectoral Variation in The Volatility of Plant-Level Idiosyncratic Shocks
We estimate the volatility of plant–level idiosyncratic shocks in the U.S. manufacturing sector. Our measure of volatility is the variation in Revenue Total Factor Productivity which is not explained by either industry– or economy–wide factors, or by establishments’ characteristics. Consistent with previous studies, we find that idiosyncratic shocks are much larger than aggregate random disturbances, accounting for about 80% of the overall uncertainty faced by plants. The extent of cross–sectoral variation in the volatility of shocks is remarkable. Plants in the most volatile sector are subject to about six times as much idiosyncratic uncertainty as plants in the least volatile. We provide evidence suggesting that idiosyncratic risk is higher in industries where the extent of creative destruction is likely to be greater.
- …