2,502 research outputs found

    Hypothyreose oder Euthyroid Sick Syndrom?

    Full text link

    Adrenocorticotropic hormone, but not trilostane, causes severe adrenal hemorrhage, vacuolization, and apoptosis in rats

    Full text link
    Adrenal necrosis has been reported as a complication of trilostane application in dogs with hyperadrenocorticism. One suspicion was that necrosis results from the increase of adrenocorticotropic hormone (ACTH) during trilostane therapy. The aim of the current study was to assess the effects of ACTH and trilostane on adrenal glands of rats. For experiment 1, 36 rats were divided into 6 groups. Groups 1.1 to 1.4 received ACTH in different doses (60, 40, 20, and 10 μg/d) infused subcutaneously with osmotic minipumps for 16 wk. Group 1.5 received saline, and group 1.6 received no therapy. For experiment 2, 24 rats were divided into 3 groups. Group 2.1 and 2.2 received 5 and 50 mg/kg trilostane/d orally mixed into chocolate pudding for 16 wk. Eight control rats received pudding alone. At the end of the experiments, adrenal glands were assessed for necrosis by histology and immunohistochemistry; levels of endogenous ACTH and nucleosomes were assessed in the blood. Rats treated with 60 μg ACTH/d showed more hemorrhage and vacuolization and increased numbers of apoptotic cells in the adrenal glands than rats treated with 20 or 10 μg ACTH/d, trilostane, or control rats. Rats treated with 60 μg ACTH/d had a higher amount of nucleosomes in the blood compared with rats treated with 10 μg ACTH/d, trilostane, or saline. We conclude that in healthy rats ACTH, but not trilostane, causes adrenal degeneration in a dose-dependent manner. Results of this study support the hypothesis that adrenal gland lesions seen in trilostane-treated dogs are caused by ACTH and not by trilostane

    Consistent alpha-cluster description of the 12C (0^+_2) resonance

    Full text link
    The near-threshold 12C (0^+_2) resonance provides unique possibility for fast helium burning in stars, as predicted by Hoyle to explain the observed abundance of elements in the Universe. Properties of this resonance are calculated within the framework of the alpha-cluster model whose two-body and three-body effective potentials are tuned to describe the alpha - alpha scattering data, the energies of the 0^+_1 and 0^+_2 states, and the 0^+_1-state root-mean-square radius. The extremely small width of the 0^+_2 state, the 0_2^+ to 0_1^+ monopole transition matrix element, and transition radius are found in remarkable agreement with the experimental data. The 0^+_2-state structure is described as a system of three alpha-particles oscillating between the ground-state-like configuration and the elongated chain configuration whose probability exceeds 0.9
    corecore