2 research outputs found

    Initiation of a Stable Convective Hydroclimatic Regime in Central America Circa 9000 Years BP

    Get PDF
    Many Holocene hydroclimate records show rainfall changes that vary with local orbital insolation. However, some tropical regions display rainfall evolution that differs from gradual precessional pacing, suggesting that direct rainfall forcing effects were predominantly driven by sea-surface temperature thresholds or inter-ocean temperature gradients. Here we present a 12,000 yr continuous U/Th-dated precipitation record from a Guatemalan speleothem showing that Central American rainfall increased within a 2000 yr period from a persistently dry state to an active convective regime at 9000 yr BP and has remained strong thereafter. Our data suggest that the Holocene evolution of Central American rainfall was driven by exceeding a temperature threshold in the nearby tropical oceans. The sensitivity of this region to slow changes in radiative forcing is thus strongly mediated by internal dynamics acting on much faster time scales

    Assessment of different sunspot number series using the cosmogenic isotope ⁴⁴Ti in meteorites

    No full text
    Abstract Many sunspot number series exist suggesting different levels of solar activity during the past centuries. Their reliability can be assessed only by comparing them with alternative indirect proxies. We test different sunspot number series against the updated record of cosmogenic radionuclide ⁴⁴Ti measured in meteorites. Two bounding scenarios of solar activity changes have been considered: the HH-scenario (based on the series by Svalgaard and Schatten), in particular, predicting moderate activity during the Maunder minimum, and the LL-scenario (based on the RG series by Lockwood et al.) predicting moderate activity for the 18th–19th centuries and the very low activity level for the Maunder minimum. For each scenario, the magnetic open solar flux, the heliospheric modulation potential and the expected production of ⁴⁴Ti were computed. The calculated production rates were compared with the corresponding measurements of ⁴⁴Ti activity in stony meteorites fallen since 1766. The analysis reveals that the LL-scenario is fully consistent with the measured ⁴⁴Ti data, in particular, recovering the observed secular trend between the 17th century and the Modern grand maximum. On the contrary, the HH-scenario appears significantly inconsistent with the data, mostly due to the moderate level of activity during the Maunder minimum. It is concluded that the HHscenario sunspot number reconstruction significantly overestimates solar activity prior to the mid-18th century, especially during the Maunder minimum. The exact level of solar activity after 1750 cannot be distinguished with this method, since both H- and L- scenarios appear statistically consistent with the data
    corecore