2,723 research outputs found

    Photo nuclear energy loss term for muon-nucleus interactions based on xi scaling model of QCD

    Get PDF
    Extensive air showers (EMC) experiments discovered a significant deviation of the ratio of structure functions of iron and deuteron from unity. It was established that the quark parton distribution in nuclei are different from the corresponding distribution in the nucleus. It was examined whether these results have an effect on the calculation of photo nucleus energy loss term for muon-nucleus nuclear interaction. Though the EMC and SLAC data were restricted to rather large q sq region it is expected that the derivation would persist even in the low q sq domain. For the ratio of iron and deuteron structure function a rather naive least square fit of the form R(x) = a + bx was taken and it is assumed that the formula is valid for the whole q sq region the absence of any knowledge of R(x) for small q sq

    Scattering in a varying mass PT symmetric double heterojunction

    Full text link
    We observe that the reflection and transmission coefficients of a particle within a double, PT symmetric heterojunction with spatially varying mass, show interesting features, depending on the degree of non Hermiticity, although there is no spontaneous breakdown of PT symmetry. The potential profile in the intermediate layer is considered such that it has a non vanishing imaginary part near the heterojunctions. Exact analytical solutions for the wave function are obtained, and the reflection and transmission coefficients are plotted as a function of energy, for both left as well as right incidence. As expected, the spatial dependence on mass changes the nature of the scattering solutions within the heterojunctions, and the space-time (PT) symmetry is responsible for the left-right asymmetry in the reflection and transmission coefficients. However, the non vanishing imaginary component of the potential near the heterojunctions gives new and interesting results.Comment: 7 pages, 8 figure
    corecore