33,159 research outputs found

    Picosecond Laser Ablation of Polyhydroxyalkanoates (PHAs): Comparative Study of Neat and Blended Material Response

    Get PDF
    Polyhydroxyalkanoates (PHAs) have emerged as a promising biodegradable and biocompatible material for scaffold manufacturing in the tissue engineering field and food packaging. Surface modification is usually required to improve cell biocompatibility and/or reduce bacteria proliferation. Picosecond laser ablation was applied for surface micro structuring of short- and medium-chain length-PHAs and its blend. The response of each material as a function of laser energy and wavelength was analyzed. Picosecond pulsed laser modified the surface topography without affecting the material properties. UV wavelength irradiation showed halved ablation thresholds compared to visible (VIS) wavelength, revealing a greater photochemical nature of the ablation process at ultraviolet (UV) wavelength. Nevertheless, the ablation rate and, therefore, ablation efficiency did not show a clear dependence on beam wavelength. The different mechanical behavior of the considered PHAs did not lead to different ablation thresholds on each polymer at a constant wavelength, suggesting the interplay of the material mechanical parameters to equalize ablation thresholds. Blended-PHA showed a significant reduction in the ablation threshold under VIS irradiation respect to the neat PHAs. Picosecond ablation was proved to be a convenient technique for micro structuring of PHAs to generate surface microfeatures appropriate to influence cell behavior and improve the biocompatibility of scaffolds in tissue engineerin

    Regularly Varying Measures on Metric Spaces: Hidden Regular Variation and Hidden Jumps

    Full text link
    We develop a framework for regularly varying measures on complete separable metric spaces S\mathbb{S} with a closed cone C\mathbb{C} removed, extending material in Hult & Lindskog (2006), Das, Mitra & Resnick (2013). Our framework provides a flexible way to consider hidden regular variation and allows simultaneous regular variation properties to exist at different scales and provides potential for more accurate estimation of probabilities of risk regions. We apply our framework to iid random variables in R+∞\mathbb{R}_+^\infty with marginal distributions having regularly varying tails and to c\`adl\`ag L\'evy processes whose L\'evy measures have regularly varying tails. In both cases, an infinite number of regular variation properties coexist distinguished by different scaling functions and state spaces.Comment: 40 page

    Theory of integer quantum Hall effect in insulating bilayer graphene

    Full text link
    A variational ground state for insulating bilayer graphene (BLG), subject to quantizing magnetic fields, is proposed. Due to the Zeeman coupling, the layer anti-ferromagnet (LAF) order parameter in fully gapped BLG gets projected onto the spin easy plane, and simultaneously a ferromagnet order, which can further be enhanced by exchange interaction, develops in the direction of the magnetic field. The activation gap for the ν=0\nu=0 Hall state then displays a crossover from quadratic to linear scaling with the magnetic field, as it gets stronger, and I obtain excellent agreement with a number of recent experiments with realistic strengths for the ferromagnetic interaction. A component of the LAF order, parallel to the external magnetic field, gives birth to additional incompressible Hall states at filling ν=±2\nu=\pm 2, whereas the remote hopping in BLG yields ν=±1\nu=\pm 1 Hall states. Evolution of the LAF order in tilted magnetic fields, scaling of the gap at ν=2\nu=2, the effect of external electric fields on various Hall plateaus, and different possible hierarchies of fractional quantum Hall states are highlighted.Comment: Published version: 5 pages, 2 figures (Supplementary: 6 pages, 2 figures); New references, typos correcte

    Sub-wavelength focusing meta-lens

    Full text link
    We show that planar a plasmonic metamaterial with spatially variable meta-atom parameters can focus transmitted light into sub-wavelength hot-spots located beyond the near-field of the metamaterial. By nano-structuring a gold film we created an array of meta-lenses generating foci of 160 nm (0.2{\lambda}) in diameter when illuminated by a wavelength of 800 nm. We attribute the occurrence of sub-wavelength hotspots beyond the near field to the phenomenon of superoscillation

    Nonlinear Propagation of Light in One Dimensional Periodic Structures

    Full text link
    We consider the nonlinear propagation of light in an optical fiber waveguide as modeled by the anharmonic Maxwell-Lorentz equations (AMLE). The waveguide is assumed to have an index of refraction which varies periodically along its length. The wavelength of light is selected to be in resonance with the periodic structure (Bragg resonance). The AMLE system considered incorporates the effects non-instantaneous response of the medium to the electromagnetic field (chromatic or material dispersion), the periodic structure (photonic band dispersion) and nonlinearity. We present a detailed discussion of the role of these effects individually and in concert. We derive the nonlinear coupled mode equations (NLCME) which govern the envelope of the coupled backward and forward components of the electromagnetic field. We prove the validity of the NLCME description and give explicit estimates for the deviation of the approximation given by NLCME from the {\it exact} dynamics, governed by AMLE. NLCME is known to have gap soliton states. A consequence of our results is the existence of very long-lived {\it gap soliton} states of AMLE. We present numerical simulations which validate as well as illustrate the limits of the theory. Finally, we verify that the assumptions of our model apply to the parameter regimes explored in recent physical experiments in which gap solitons were observed.Comment: To appear in The Journal of Nonlinear Science; 55 pages, 13 figure
    • …
    corecore