14 research outputs found

    Orbital Space Environment and Space Situational Awareness Domain Ontology

    Get PDF
    A short summary paper of my Orbital Space Domain Ontology project (purl.org/space-ontology), originally conceived in 2011. Since then I've sought (without success) opportunities to realize it (either as a PhD or other degree thesis; or in an employment position) toward my original passion of entering the space sector and gaining further space education. Since then persons in the relevant space disciplines have seen the potential in it, and unfortunately some have taken advantage of my ideas yet excluded me from work. I continue to struggle to fight for my own ideas as I see others professionally and financially benefit at my expense. References and documentation are available upon request to confirm my early ideation and origination on this topic. Please contact me if you have opportunities. Thank you

    Ontology For Europe's Space Situational Awareness Program

    Get PDF
    This paper presents an ontology architecture concept for the European Space Agency‘s (ESA) Space Situational Awareness (SSA) Program. It incorporates the author‘s domain ontology, The Space Situational Awareness Ontology and related ontology work. I summarize computational ontology, discuss the segments of ESA SSA, and introduce an option for a modular ontology framework reflecting the divisionsof the SSA program. Among other things, ontologies are used for data sharing and integration. By applying ontology to ESA data, the ESA may better achieve its integration and innovation goals, while simultaneously improving the state of peaceful SSA

    The Orbital Space Environment and Space Situational Awareness Domain Ontology – Towards an International Information System for Space Data

    Get PDF
    The orbital space environment is home to natural and artificial satellites, debris, and space weather phenomena. As the population of orbital objects grows so do the potential hazards to astronauts, space infrastructure and spaceflight capability. Orbital debris, in particular, is a universal concern. This and other hazards can be minimized by improving global space situational awareness (SSA). By sharing more data and increasing observational coverage of the space environment we stand to achieve that goal, thereby making spaceflight safer and expanding our knowledge of near-Earth space. To facilitate data-sharing interoperability among distinct orbital debris and space object catalogs, and SSA information systems, I proposed ontology in (Rovetto, 2015) and (Rovetto and Kelso, 2016). I continue this effort toward formal representations and models of the overall domain that may serve to improve peaceful SSA and increase our scientific knowledge. This paper explains the project concept introduced in those publications, summarizing efforts to date as well as the research field of ontology development and engineering. I describe concepts for an ontological framework for the orbital space environment, near-Earth space environment and SSA domain. An ontological framework is conceived as a part of a potential international information system. The purpose of such a system is to consolidate, analyze and reason over various sources and types of orbital and SSA data toward the mutually beneficial goals of safer space navigation and scientific research. Recent internationals findings on the limitations of orbital data, in addition to existing publications on collaborative SSA, demonstrate both the overlap with this project and the need for data-sharing and integration

    An Ontological Architecture for Orbital Debris Data

    Get PDF
    The orbital debris problem presents an opportunity for inter-agency and international cooperation toward the mutually beneficial goals of debris prevention, mitigation, remediation, and improved space situational awareness (SSA). Achieving these goals requires sharing orbital debris and other SSA data. Toward this, I present an ontological architecture for the orbital debris and broader SSA domain, taking steps in the creation of an orbital debris ontology (ODO). The purpose of this ontological system is to (I) represent general orbital debris and SSA domain knowledge, (II) structure, and standardize where needed, orbital data and terminology, and (III) foster semantic interoperability and data-sharing. In doing so I hope to (IV) contribute to solving the orbital debris problem, improving peaceful global SSA, and ensuring safe space travel for future generations

    Defending Spaceflight - The Echoes of Apollo

    Get PDF
    This paper defends, and emphasizes the importance of, spaceflight, broadly construed to include human and unmanned spaceflight, space science, exploration and development. Within this discourse, I provide counter-replies to remarks by physicist Dr. Steven Weinberg against my previous support of human spaceflight. In this defense of peaceful spaceflight I draw upon a variety of sources. Although a focus is human spaceflight, human and unmanned modes must not be treated as an either-or opposition. Rather, each has a critical role to play in moving humanity forward as a spacefaring species. In the course of this communication, I also stress NASA’s (and other space agency’s) perennial role as a science and technology-driver, and its function to provide a stable and unified platform for space programs

    Preliminaries of a Space Situational Awareness Ontology

    Get PDF
    Space situational awareness (SSA) is vital for international safety and security, and for the future of space travel. The sharing of SSA data and information should improve the state of global SSA for planetary defense and spaceflight safety. I take steps toward a Space Situational Awareness (SSA) Ontology, and outline some central objectives, requirements and desiderata in the ontology development process for this domain. The purpose of this ontological system is to explore the potential for the ontology research topic to (i) represent SSA general knowledge, data, and entities/objects, (ii) clearly express the meaning of SSA data, and (iii) foster SSA data-sharing. The overall goal and motivation is to (iv) improve our capacity for planetary defense, e.g., from near- or deep-space objects and phenomena, and (v) facilitate safer and peaceful space access, navigation and travel, by improving global SSA. This research is thereby intended only for peaceful space-domain applications and uses, with particular interests in orbital debris. There is little application of ontology to the space domain as compared with other disciplines and little if any ontological development of SSA and related domains. In this respect, this paper offers novel concepts

    Presentism and the Problem of Singular Propositions about Non-Present Objects – Limitations of a Proposed Solution

    Get PDF
    In “A Defense of Presentism ”, Ned Markosian addresses the problem of singular propositions about non-present objects. The proposed solution uses a paraphrasing strategy that differentiates between two kinds of meaning in declarative sentences, and also distinguishes between two truth-conditions for singular propositions. The solution, however, is unsatisfactory. I demonstrate that the both truth-conditions suffer from the same problems in spite of the examples used to support the claim that one is a proper treatment for singular propositions. Part of the difficulty is in the limited expressivity of logical formalisms, a limitation not unique to the philosophy of time, but which calls for greater attentio

    The Space Object Ontology

    No full text
    This paper develops the ontology of space objects for theoretical and computational ontology applied to the space (astronautical/astronomical) domain. It follows “An ontological architecture for Orbital Debris Data” (Rovetto, 2015) and “Preliminaries of a Space Situational Awareness Ontology” (Rovetto, Kelso, 2016). Important considerations for developing a space object ontology, or more broadly, a space domain ontology are presented. The main category term ‘Space Object’ is analyzed from a philosophical perspective. The ontological commitments of legal definitions for artificial space objects are also discussed. Space object taxonomies are offered and space object terms are defined
    corecore