1,124 research outputs found

    The BL-Lac gamma-ray blazar PKS 0447-439 as a probable member of a group of galaxies at z=0.343

    Get PDF
    The BL-Lac blazar PKS 0447-439 is one of the brightest HE gamma-ray sources that were first detected by Fermi-LAT. It was also detected by H.E.S.S. at VHE gamma-rays, which allowed constraining the redshift of PKS 0447-439 by considering the attenuation caused by gamma-ray interactions with ambient photons in the extragalactic background light (EBL). This constraint agreed with color-magnitude and spectroscopic redshift constraints (0.179 < z < 0.56), Recently, however, a much higher redshift was proposed for this blazar (z > 1.2). This value was debated because if true, it would imply either that the relevant absorption processes of gamma-rays are not well understood or that the EBL is dramatically different from what is believed today. This high redshift was not confirmed by three independent new spectroscopic observations at high signal-to-noise ratios. Given that BL-Lac are typically hosted by elliptical galaxies, which in turn are associated with groups, we aim to find the host group of galaxies of PKS 0447-439. The ultimate goal is to estimate a redshift for this blazar. Spectra of twenty-one objects in the field of view of PKS 0447-439 were obtained with the Gemini Multi-Object Spectrograph. Based on the redshifts and coordinates of these galaxies, we searched for groups of galaxies. Using a deep catalog of groups, we studied the probability of finding by chance a group of galaxies in the line of sight of PKS 0447-439. We identified a group of galaxies that was not previously cataloged at z = 0.343 with seven members, a virial radius of 0.42 Mpc, and a velocity dispersion of 622 km s^-1. We found that the probability of the host galaxy of PKS 0447-439 to be a member of the new group is >= 97%. Therefore, we propose to adopt z = 0.343 +- 0.002 as the most likely redshift for PKS 0447-439.Comment: Accepted for publication in A&

    Absolute Calibration of the Auger Fluorescence Detectors

    Get PDF
    Absolute calibration of the Pierre Auger Observatory fluorescence detectors uses a light source at the telescope aperture. The technique accounts for the ombined effects of all detector components in a single measurement. The calibrated 2.5 m diameter light source fills the aperture, providing uniform illumination to each pixel. The known flux from the light source and the response of the acquisition system give the required calibration for each pixel. In the lab, light source uniformity is studied using CCD images and the intensity is measured relative to NIST-calibrated photodiodes. Overall uncertainties are presently 12%, and are dominated by systematics.Comment: 4 pages, 3 figure. Submitted to the 29th ICRC, Pune, Indi

    Absolute Calibration of a Large-diameter Light Source

    Get PDF
    A method of absolute calibration for large aperture optical systems is presented, using the example of the Pierre Auger Observatory fluorescence detectors. A 2.5 m diameter light source illuminated by an ultra--violet light emitting diode is calibrated with an overall uncertainty of 2.1 % at a wavelength of 365 nm.Comment: 15 pages, 8 figures. Submitted to JINS

    Sites for Gamma-ray Astronomy in Argentina

    Full text link
    We have searched for possible sites in Argentina for the installation of large air Cherenkov telescope arrays and water Cherenkov systems. At present seven candidates are identified at altitudes from 2500 to 4500 m. The highest sites are located at the Northwest of the country, in La Puna. Sites at 2500 and 3100 m are located in the West at El Leoncito Observatory, with excellent infrastructure. A description of these candidate sites is presented with emphasis on infrastructure and climatology.Comment: Submitted to Proceedings of "4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy 2008

    Multi-wavelength Calibration Procedure for the Pierre Auger Observatory Fluorescence Detectors

    Get PDF
    We present a method to measure the relative spectral response of the Pierre Auger Observatory Fluorescence Detector. The calibration was done at wavelengths of 320, 337, 355, 380 and 405 nm using an end-to-end technique in which the response of all detector components are combined in a single measurement. A xenon flasher and notch-filters were used as the light source for the calibration device. The overall uncertainty is 5%.Comment: Submitted to Astroparticle Physics. V2: section 5.2 extended; author list change
    • …
    corecore