190 research outputs found
Reentrant Condensation of DNA induced by Multivalent Counterions
A theory of condensation and resolubilization of a dilute DNA solution with
growing concentration of multivalent cations, N is suggested. It is based on a
new theory of screening of a macroion by multivalent cations, which shows that
due to strong cation correlations at the surface of DNA the net charge of DNA
changes sign at some small concentration of cations N_0. DNA condensation takes
place in the vicinity of N_0, where absolute value of the DNA net charge is
small and the correlation induced short range attraction dominates the Coulomb
repulsion. At N > N_0 positive DNA should move in the oppisite direction in an
electrophoresis experiment. From comparison of our theory with experimental
values of condensation and resolubilization thresholds for DNA solution
containing Spe, we obtain that N_0 = 3.2 mM and that the energy of DNA
condensation per nucleotide is .Comment: 8 pages, 4 figures, references correcte
Effects of mechanical strain on thermal denaturation of DNA
As sections of a strand duplexed DNA denature when exposed to high
temperature, the excess linking number is taken up by the undenatured portions
of the molecule. The mechanical energy that arises because of the overwinding
of the undenatured sections can, in principle, alter the nature of the thermal
denaturation process. Assuming that the strains associated with this
overwinding are not relieved, we find that a simple model of strain-altered
melting leads to a suppression of the melting transition when the unaltered
transition is continuous. When the melting transition is first order in the
absence of strain associated with overwinding, the modification is to a third
order phase transition.Comment: 4 pages, 5 figures, RevTe
Unzipping Kinetics of Double-Stranded DNA in a Nanopore
We studied the unzipping kinetics of single molecules of double-stranded DNA
by pulling one of their two strands through a narrow protein pore. PCR analysis
yielded the first direct proof of DNA unzipping in such a system. The time to
unzip each molecule was inferred from the ionic current signature of DNA
traversal. The distribution of times to unzip under various experimental
conditions fit a simple kinetic model. Using this model, we estimated the
enthalpy barriers to unzipping and the effective charge of a nucleotide in the
pore, which was considerably smaller than previously assumed.Comment: 10 pages, 5 figures, Accepted: Physics Review Letter
The bend stiffness of S-DNA
We formulate and solve a two-state model for the elasticity of nicked,
double-stranded DNA that borrows features from both the Worm Like Chain and the
Bragg--Zimm model. Our model is computationally simple, and gives an excellent
fit to recent experimental data through the entire overstretching transition.
The fit gives the first value for the bending stiffness of the overstretched
state as about 10 nm*kbt, a value quite different from either B-form or
single-stranded DNA.Comment: 7 pages, 1 figur
The HIV-1 nucleocapsid chaperone protein forms locally compacted globules on long double-stranded DNA
The nucleocapsid (NC) protein plays key roles in Human Immunodeficiency Virus 1 (HIV-1) replication, notably by condensing and protecting the viral RNA genome and by chaperoning its reverse transcription into double-stranded DNA (dsDNA). Recent findings suggest that integration of viral dsDNA into the host genome, and hence productive infection, is linked to a small subpopulation of viral complexes where reverse transcription was completed within the intact capsid. Therefore, the synthesized dsDNA has to be tightly compacted, most likely by NC, to prevent breaking of the capsid in these complexes. To investigate NC\u27s ability to compact viral dsDNA, we here characterize the compaction of single dsDNA molecules under unsaturated NC binding conditions using nanofluidic channels. Compaction is shown to result from accumulation of NC at one or few compaction sites, which leads to small dsDNA condensates. NC preferentially initiates compaction at flexible regions along the dsDNA, such as AT-rich regions and DNA ends. Upon further NC binding, these condensates develop into a globular state containing the whole dsDNA molecule. These findings support NC\u27s role in viral dsDNA compaction within the mature HIV-1 capsid and suggest a possible scenario for the gradual dsDNA decondensation upon capsid uncoating and NC loss
Negative electrostatic contribution to the bending rigidity of charged membranes and polyelectrolytes screened by multivalent counterions
Bending rigidity of a charged membrane or a charged polyelectrolyte screened
by monovalent counterions is known to be enhanced by electrostatic effects. We
show that in the case of screening by multivalent counterions the electrostatic
effects reduce the bending rigidity. This inversion of the sign of the
electrostatic contribution is related to the formation of two-dimensional
strongly correlated liquids (SCL) of counterions at the charged surface due to
strong lateral repulsion between them. When a membrane or a polyelectrolyte is
bent, SCL is compressed on one side and stretched on the other so that
thermodynamic properties of SCL contribute to the bending rigidity.
Thermodynamic properties of SCL are similar to those of Wigner crystal and are
anomalous in the sense that the pressure, compressibility and screening radius
of SCL are negative. This brings about substantial negative correction to the
bending rigidity. For the case of DNA this effect qualitatively agrees with
experiment.Comment: 8 pages, 2 figure
Theory of High-Force DNA Stretching and Overstretching
Single molecule experiments on single- and double stranded DNA have sparked a
renewed interest in the force-extension of polymers. The extensible Freely
Jointed Chain (FJC) model is frequently invoked to explain the observed
behavior of single-stranded DNA. We demonstrate that this model does not
satisfactorily describe recent high-force stretching data. We instead propose a
model (the Discrete Persistent Chain, or ``DPC'') that borrows features from
both the FJC and the Wormlike Chain, and show that it resembles the data more
closely. We find that most of the high-force behavior previously attributed to
stretch elasticity is really a feature of the corrected entropic elasticity;
the true stretch compliance of single-stranded DNA is several times smaller
than that found by previous authors. Next we elaborate our model to allow
coexistence of two conformational states of DNA, each with its own stretch and
bend elastic constants. Our model is computationally simple, and gives an
excellent fit through the entire overstretching transition of nicked,
double-stranded DNA. The fit gives the first values for the elastic constants
of the stretched state. In particular we find the effective bend stiffness for
DNA in this state to be about 10 nm*kbt, a value quite different from either
B-form or single-stranded DNAComment: 33 pages, 11 figures. High-quality figures available upon reques
Kinetics of macroion coagulation induced by multivalent counterions
Due to the strong correlations between multivalent counterions condensed on a
macroion, the net macroion charge changes sign at some critical counterion
concentration. This effect is known as the charge inversion. Near this critical
concentration the macroion net charge is small. Therefore, short range
attractive forces between macroions dominate Coulomb repulsion and lead to
their coagulation. The kinetics of macroion coagulation in this range of
counterion concentrations is studied. We calculate the Coulomb barrier between
two approaching like charged macroions at a given counterion concentration. Two
different macroion shapes (spherical and rod-like) are considered. A new
"self-regulated" regime of coagulation is found. As the size of aggregates
increases, their charge and Coulomb barrier also grow and diminish the sticking
probability of aggregates. This leads to a slow, logarithmic increase of the
aggregate size with time.Comment: Some formulas correcte
Potential of mean force and the charge reversal of rodlike polyions
A simple model is presented to calculate the potential of mean force between
a polyion and a multivalent counterion inside a polyelectrolite solution. We
find that under certain conditions the electrostatic interactions can lead to a
strong attraction between the polyions and the multivalent counterions,
favoring formation of overcharged polyion-counterion complexes. It is found
that small concentrations of salt enhance the overcharging, while an excessive
amount of salt hinders the charge reversal. The kinetic limitations to
overcharging are also examined.Comment: To be published in the special issue of Molecular Physics in honor of
Prof. Ben Wido
Denaturation transition of stretched DNA
We generalize the Poland-Scheraga model to consider DNA denaturation in the
presence of an external stretching force. We demonstrate the existence of a
force-induced DNA denaturation transition and obtain the temperature-force
phase diagram. The transition is determined by the loop exponent for which
we find the new value such that the transition is second order
with in . We show that a finite stretching force
destabilizes DNA, corresponding to a lower melting temperature , in
agreement with single-molecule DNA stretching experiments.Comment: 5 pages, 3 figure
- …