4 research outputs found

    Toxic love:Evolutionary genomics of the enigmatic Sex Peptide

    Get PDF

    Toxic love:Evolutionary genomics of the enigmatic Sex Peptide

    Get PDF

    Toxic love:Evolutionary genomics of the enigmatic Sex Peptide

    Get PDF
    Living organisms compete for survival and reproduction, whereupon the fittest live and thrive and the weakest fail and some cases even die. This battle for life acts on different levels, causing individuals of distinct species as well as individuals of the same species to compete over a variety of limiting resources such as food, breeding sites and mates. An important form of competition is driven by sexual conflict and often occurs when reproductive strategies between males and female diverge. These occur because there are differences in the evolutionary interests of the sexes over, for example, optimal reproductive rate, gamete size and parental investments. This has led to the evolution of different strategies to alter or overcome the manipulation of one sex by other, while maintaining a base line level of cooperation sufficient to ensure successful reproduction. This sexual conflict is an important evolutionary process as it can drive rapid evolutionary change. The manipulation of one sex by the other through molecular interactions has been illuminated in studies using the fruit fly Drosophila melanogaster. Males tend to maximize their chances at fatherhood by releasing both sperm and semen inside the female’s body during mating. The effects of semen proteins can benefit both sperm and eggs, but intriguingly they can also favour the interests of males whilst generating costs in females, resulting in sexual conflict. In Drosophila melanogaster, the female body has been the battlefield of sexual conflict, as semen proteins exert their effects in females after mating. This manipulation by males through molecular interactions can inflict substantial physical and physiological costs of mating in females. One enigmatic seminal fluid protein the ‘Sex Peptide’, generates strikingly diverse changes in female physiological and reproductive behaviour. Sex Peptide triggers remarkable female post mating responses including altered fertility, immunity, libido, eating and sleep patterns, by the activation of diverse sets of genes. In many studies of the molecular mechanisms of female manipulation via the effects of Sex Peptide, genetic variation is minimised in order to clearly delineate biological functions. However, to understand the evolutionary processes and dynamics that characterise Sex Peptide mediated interactions between males and females, it is important to study this genetic variation. With high-throughput sequencing technologies that have provided resources such as >200 fully sequenced DGRP lines (Drosophila Genome Reference Panel), we traced the impact of the enigmatic Sex Peptide on the fruitfly genome. In this thesis I performed an in-depth investigation of the phenotypic and genomic differences among 30-32 DGRP lines, with respect to male release of, and female responses to, Sex Peptide. I measured phenotypic variation for Sex Peptide release in males; and in females the phenotypic variation in immune responses, egg laying, receptivity and longevity in response to Sex Peptide receipt. I compared these phenotypic post-mating responses to those of females that mated to males with a null-allele for Sex Peptide, to distinguish the specific response to Sex Pepetide. I mapped these phenotypes to genomic variation using Genome Wide Association Studies and conducted functional characterizations on the genomic variation identified

    Evolutionary genomics of the enigmatic Sex Peptide

    Get PDF
    The ’battle for life’ can act on different levels, causing individuals of distinct species, as well as individuals of the same species, to compete over a variety of limiting resources such as food, breeding sites and mates. An important form of competition is driven by sexual conflict and often occurs when reproductive strategies between males and female diverge. This has led to the evolution of different strategies to overcome manipulations by the other sex, while maintaining a level of cooperation sufficient to ensure successful reproduction. The manipulation of one sex by the other through molecular interactions has been illuminated by studies of Drosophila melanogaster. Males tend to maximize their chances at fatherhood by releasing sperm and semen proteins into the females. The semen proteins can benefit both sperm and eggs, however they can also sometimes favour the interests of males whilst generating costs in females. One enigmatic semen protein that falls into this category is the ‘Sex Peptide’, which generates strikingly diverse changes in behavior, reproductive and immune system of females. In most studies of the effects of Sex peptide, genetic variation has been minimized to delineate its’ function. However, to understand the evolutionary processes and dynamics that characterise Sex Peptide-mediated interactions between both sexes, it is important to study this genetic variation. In this thesis, I trace the impact of Sex Peptide on the consequences of sexual conflict in the Drosophila melanogaster genome. An in-depth investigation was performed to measure female post-mating phenotypic traits (immunity, egg laying, receptivity to re-mating and starvation lifespan) in response to receipt of Sex Peptide, using 32 Drosophila Genome Reference Panel (DGRP) lines. I also developed a novel quantification technique to measure variation in the amount of Sex Peptide transferred among males. A genome wide association (GWAS) and functional annotation study of the tested phenotypic traits revealed significant genetic variation involved in the transfer of, and the post-mating responses to, Sex Peptide. This investigation of natural variation allowed me to map phenotypes onto underpinning genomic variation, and to determine the likely impact of sexual conflict on genome evolution
    corecore