161 research outputs found

    Modulation of the autonomic nervous system and behaviour by acute glial cell G q protein-coupled receptor activation in vivo: Glial GPCR signalling in physiology and behaviourin vivo

    Get PDF
    Glial fibrillary acidic protein (GFAP)-expressing cells (GFAP+ glial cells) are the predominant cell type in the central and peripheral nervous systems. Our understanding of the role of GFAP+ glial cells and their signalling systems in vivo is limited due to our inability to manipulate these cells and their receptors in a cell type-specific and non-invasive manner. To circumvent this limitation, we developed a transgenic mouse line (GFAP-hM3Dq mice) that expresses an engineered Gq protein-coupled receptor (Gq-GPCR) known as hM3Dq DREADD (designer receptor exclusively activated by designer drug) selectively in GFAP+ glial cells. The hM3Dq receptor is activated solely by a pharmacologically inert, but bioavailable, ligand (clozapine-N-oxide; CNO), while being non-responsive to endogenous GPCR ligands. In GFAP-hM3Dq mice, CNO administration increased heart rate, blood pressure and saliva formation, as well as decreased body temperature, parameters that are controlled by the autonomic nervous system (ANS). Additionally, changes in activity-related behaviour and motor coordination were observed following CNO administration. Genetically blocking inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ increases in astrocytes failed to interfere with CNO-mediated changes in ANS function, locomotor activity or motor coordination. Our findings reveal an unexpectedly broad role of GFAP+ glial cells in modulating complex physiology and behaviour in vivo and suggest that these effects are not dependent on IP3-dependent increases in astrocytic Ca2+

    Survivors of Chronic Stroke Experience Continued Impairment of Dexterity But Not Strength in the Nonparetic Upper Limb

    Get PDF
    Objective To investigate the performance of the less affected upper limb in people with stroke compared with normative values. To examine less affected upper limb function in those whose prestroke dominant limb became paretic and those whose prestroke nondominant limb became paretic. Design Cohort study of survivors of chronic stroke (7.2±6.7y post incident). Setting The study was performed at a freestanding academic rehabilitation hospital. Participants Survivors of chronic stroke (N=40) with severe hand impairment (Chedoke-McMaster Stroke Assessment rating of 2-3 on Stage of Hand) participated in the study. In 20 participants the prestroke dominant hand (DH) was tested (nondominant hand [NH] affected by stroke), and in 20 participants the prestroke NH was tested (DH affected by stroke). Interventions Not applicable. Main Outcome Measure Jebsen-Taylor Hand Function Test. Data from survivors of stroke were compared with normative age- and sex-matched data from neurologically intact individuals. Results When combined, DH and NH groups performed significantly worse on fine motor tasks with their nonparetic hand relative to normative data (PP\u3e.140). Conclusions Survivors of stroke with severe impairment of the paretic limb continue to present significant upper extremity impairment in their nominally nonparetic limb even years after stroke. This phenomenon was observed regardless of whether the DH or NH hand was primarily affected. Because this group of survivors of stroke is especially dependent on the nonparetic limb for performing functional tasks, our results suggest that the nonparetic upper limb should be targeted for rehabilitation

    A Nationally Representative Survey Assessing Restorative Sleep in US Adults

    Get PDF
    Restorative sleep is a commonly used term but a poorly defined construct. Few studies have assessed restorative sleep in nationally representative samples. We convened a panel of 7 expert physicians and researchers to evaluate and enhance available measures of restorative sleep. We then developed the revised Restorative Sleep Questionnaire (REST-Q), which comprises 9 items assessing feelings resulting from the prior sleep episode, each with 5-point Likert response scales. Finally, we assessed the prevalence of high, somewhat, and low REST-Q scores in a nationally representative sample of US adults (n= 1,055) and examined the relationship of REST-Q scores with other sleep and demographic characteristics. Pairwise correlations were performed between the REST-Q scores and other self-reported sleep measures. Weighted logistic regression analyses were conducted to compare scores on the REST-Q with demographic variables. The prevalence of higher REST-Q scores (4 or 5 on the Likert scale) was 28.1% in the nationally representative sample. REST-Q scores positively correlated with sleep quality (r=0.61) and sleep duration (r=0.32), and negatively correlated with both difficulty falling asleep (r=-0.40) and falling back asleep after waking (r=-0.41). Higher restorative sleep scores (indicating more feelings of restoration upon waking) were more common among those who were: ≥60 years of age (OR=4.20, 95%CI: 1.92-9.17); widowed (OR=2.35, 95%CI:1.01-5.42), and retired (OR=2.02, 95%CI:1.30-3.14). Higher restorative sleep scores were less frequent among those who were not working (OR=0.36, 95%CI: 0.10-1.00) and living in a household with two or more persons (OR=0.51,95%CI:0.29-0.87). Our findings suggest that the REST-Q may be useful for assessing restorative sleep

    The anthelmintic praziquantel is a human serotoninergic G-protein-coupled receptor ligand

    Get PDF
    Schistosomiasis is a debilitating tropical disease caused by infection with parasitic blood flukes. Approximately 260 million people are infected worldwide, underscoring the clinical and socioeconomic impact of this chronic infection. Schistosomiasis is treated with the drug praziquantel (PZQ), which has proved the therapeutic mainstay for over three decades of clinical use. However, the molecular target(s) of PZQ remain undefined. Here we identify a molecular target for the antischistosomal eutomer - (R)-PZQ - which functions as a partial agonist of the human serotoninergic 5HT2B receptor. (R)-PZQ modulation of serotoninergic signaling occurs over a concentration range sufficient to regulate vascular tone of the mesenteric blood vessels where the adult parasites reside within their host. These data establish (R)-PZQ as a G-protein-coupled receptor ligand and suggest that the efficacy of this clinically important anthelmintic is supported by a broad, cross species polypharmacology with PZQ modulating signaling events in both host and parasite

    Chemogenetic Inactivation of Ventral Hippocampal Glutamatergic Neurons Disrupts Consolidation of Contextual Fear Memory

    Get PDF
    Synaptic consolidation is a process thought to consolidate memory in the brain. Although lesion studies have mainly implicated the hippocampus (HPC) in this process, it is unknown which cell type(s) or regions of the HPC might be essential for synaptic consolidation. To selectively and reversibly suppress hippocampal neuronal activity during this process, we developed a new Gi-DREADD (hM4Di) transgenic mouse for in vivo manipulation of neuronal activity in freely moving animals. We found that CA1 pyramidal neurons could be dose-dependently inactivated by clozapine-n-oxide (CNO). Inactivation of hippocampal neurons within 6 h immediately after conditioned fear training successfully impaired the consolidation of contextual memory, without disturbing cued memory. To anatomically define the brain subregion critical for the behavioral effects, hM4Di viral vectors were transduced and selectively expressed in the glutamatergic neurons in either the dorsal or ventral HPC. Significantly, we found that selective inactivation of ventral but not dorsal glutamatergic hippocampal neurons suppressed the synaptic consolidation of contextual memory

    Alterations of biaxial viscoelastic properties of the right ventricle in pulmonary hypertension development in rest and acute stress conditions

    Get PDF
    Introduction: The right ventricle (RV) mechanical property is an important determinant of its function. However, compared to its elasticity, RV viscoelasticity is much less studied, and it remains unclear how pulmonary hypertension (PH) alters RV viscoelasticity. Our goal was to characterize the changes in RV free wall (RVFW) anisotropic viscoelastic properties with PH development and at varied heart rates.Methods: PH was induced in rats by monocrotaline treatment, and the RV function was quantified by echocardiography. After euthanasia, equibiaxial stress relaxation tests were performed on RVFWs from healthy and PH rats at various strain-rates and strain levels, which recapitulate physiological deformations at varied heart rates (at rest and under acute stress) and diastole phases (at early and late filling), respectively.Results and Discussion: We observed that PH increased RVFW viscoelasticity in both longitudinal (outflow tract) and circumferential directions. The tissue anisotropy was pronounced for the diseased RVs, not healthy RVs. We also examined the relative change of viscosity to elasticity by the damping capacity (ratio of dissipated energy to total energy), and we found that PH decreased RVFW damping capacity in both directions. The RV viscoelasticity was also differently altered from resting to acute stress conditions between the groups—the damping capacity was decreased only in the circumferential direction for healthy RVs, but it was reduced in both directions for diseased RVs. Lastly, we found some correlations between the damping capacity and RV function indices and there was no correlation between elasticity or viscosity and RV function. Thus, the RV damping capacity may be a better indicator of RV function than elasticity or viscosity alone. These novel findings on RV dynamic mechanical properties offer deeper insights into the role of RV biomechanics in the adaptation of RV to chronic pressure overload and acute stress
    • …
    corecore